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Symbol Meaning Comments 

bsp Width of spandrel Eqs 10.35, 10.37, 10.39, 10.40, 10.41, 
10.42, 10.43, 10.46, 10.47, 10.48, 10.49 

c Masonry bed-joint cohesion, N/mm2 The ability of the mortar to work in 
conjunction with the bricks.  

This is related to moisture absorption in 
the bricks. It depends less on the 
absorption qualities of individual brick 
types and is not greatly influenced by 
keying of the brick surface (e.g. holes, 
lattices or patterning). 

Cohesion is relevant to the primary 
decision of whether to use cracked or un-
cracked masonry properties for the 
analyses. 

Eqs 10.3, 10.33, 10.39, 10.47 10.36 

c Probable cohesion, MPa Table 10.4 

C(0)  Section 10.10.5.1, Figure 10.78 

C(T1) Elastic site hazard spectrum for horizontal 
loading 

Eq 10.53 

C(Td) Seismic coefficient at required height at 
period Td 

Eq 10.54 

Ch(0) Spectral shape factor for relevant soil 
determined from Clause 3.1.1, NZS 
1170.5, g 

Appendix 10C 

Ch(T1) Spectral shape factor for relevant site 
subsoil type and period T1 as determined 
from Section 3, NZS 1170.5, g 

Eq 10.53 

Chc(Tp) Spectral shape factor for site subsoil type 
C and period Tp as determined from 
Section 3, NZS 1170.5, g 

Eq 10.16 

CHi Floor height coefficient for level i as 
defined in NZS 1170.5 

Appendix 10C 

Ci(Tp)  Eq 10.16, Section 10.10.3 

Cm Value of the seismic coefficient that would 
cause a mechanism to just form, g 

Uniform acceleration to the entire panel is 
assumed in finding Cm 

Eq 10.21, Section 10.8.5.2 Step 15 Note, 
Table 10.12, 10.27, 10B.20 

Cp(0.75) Seismic coefficient for parts at 0.75 sec. 
Value of the seismic coefficient that would 
cause a mechanism to just form, g 

Section 10.8.5.2 Step 13 & Step 15 Note 

Cp(Tp) Design response coefficient for parts as 
defined by Section 8, NZS 1170.5, g 

Section 18.8.5.2 Step 8, Eqs 10.18, 10.19, 
Section 10.8.5.2 Step 13 

CSW Critical structural weakness  

D  Table 10.14 

Dph Displacement response (demand) for a 
wall panel subject to an earthquake 
shaking as specified by Equation 10.18, 
mm 

Eqs 10.18, 10.20 

e  Table 10.14 
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Symbol Meaning Comments 

Em Young’s modulus of masonry, MPa, kN/m2 Eqs 10.4, 10.8, 10.51, 10.52 

eb Eccentricity of the pivot at the bottom of 
the panel measured from the centroid of 
Wb, mm 

Eq 10.12, Table 10.12, 10.15, 
Section 10.8.5.2 Step 4, Figure 10B.1 

eo Eccentricity of the mid-height pivot 
measured from the centroid of Wb, mm 

Eq 10.12, 10.15, Section 10.8.5.2 Step 4, 
Figure 10B.1 

ep Eccentricity of P measured from the 
centroid of Wt, mm 

Eq 10.12, 10.15, Table 10.12, 
Section 10.8.5.2 Step 4, Figure 10B.1 

et Eccentricity of the mid-height pivot 
measured from the centroid of Wt, mm 

Eqs 10.12, 10.15, Section 10.8.5.2 Step 4, 
Figure 10B.1 

F Applied load on timber lintel Eq 10.42 

Fi Equivalent static horizontal force at the 
level of the diaphragm (level i) 

Section 10.10.5.1, Figure 10.78 

f’b Compressive strength of bricks, N/mm2 Measured on the flat side 

Section 10A.3.2 

f’b Probable brick compressive strength, MPa Table 10.3, 10.5, Eqs 10.1, 10.2 

f’j Normalised mortar compressive strength, 
N/mm2 

Eq 10A.1 

f’j Probable mortar compressive strength, 
MPa 

Table 10.4, Eq 10.2, Table 10.5 

f’ji Measured irregular mortar compressive 
strength, MPa 

Eq 10A.1 

f’m Compressive strength of masonry, MPa Eq 10.31 

f’m Probable masonry compressive strength, 
MPa 

Eq 10.2, Table 10.5, Eq 10.4 

f'r Modulus of rupture of bricks, MPa Eq 10.1, Section 10.8.5.1 

f't Equivalent tensile strength of masonry 
spandrel, MPa 

Eqs 10.9, 10.35, 10.36 

fa Axial compression stress on masonry due 
to gravity load, MPa 

Eqs 10.3, 10.30, 10.31 

fbt Probable brick tensile strength, MPa May be taken as 85% of the stress derived 
from splitting tests or as 50% of stress 
derived from bending tests 

Table 10.3 

fdt Diagonal tensile strength of masonry, MPa Eqs 10.3, 10.30, 10.38, 10.40, 10.48 

fhm Compression strength of the masonry in 
the horizontal direction (0.5f’m), MPa 

Eqs 10.37, 10.46 

g Acceleration due to gravity, m/sec2 Eqs 10.15, 10.17, 10.18, 10.29 

G’d Reduced diaphragm shear stiffness, kN/m Eqs 10.6, 10.7, 10.8 

G’d,eff  Effective diaphragm shear stiffness, kN/m Eqs 10.7, 10.54 

Gd Shear stiffness of straight sheathed 
diaphragm, kN/m 

Table 10.8, Eq 10.6 

Gm Shear modulus of masonry, MPa Eqs 10.5, 10.51, 10.52 
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Symbol Meaning Comments 

h Free height of a cantilever wall from its 
point of restraint or height of wall in 
between restraints in case of simply-
supported face-loaded wall 

The clear height can be taken at the 
centre-to-centre height between lines of 
horizontal restraint. In the case of concrete 
floors, the clear distance between floors 
will apply. 

Eqs 10.13, 10.17 

hi Average of the heights of point of support  Section 10.8.5.2 Step 8 

hi Height of attachment of the part  Figure 10.78 

Hl Height of wall below diaphragm, m  Eq 10.8 

heff Height of wall or pier between resultant 
forces 

Table 10.13, Eqs 10.31, 10.32, 
Figures 10.65, 10.74, Table 10.14, 
Eq 10.51 

hi Average of the heights of points of support Section 10.8.5.2 Step 8 

hn  Figure 10.78 

hsp Height of spandrel excluding depth of 
timber lintel if present 

Eqs 10.35, 10.37, 10.38, 10.39, 10.40, 
10.41, 10.42, 10.43, 10.46, 10.47, 10.48, 
10.49 

htot  Eq 10.46, Figure 10.69 

Hu Heigh of wlall above diaphragm, m  Eq 10.8 

Ig Moment of inertia for the gross section 
representing uncracked behaviour 

Eq 10.51 

Ixx Mass moment of inertia about x-x axis, 
kgm2  

Eq 10B.9 

Iyy Mass moment of inertia about y-y axis, 
kgm2  

Eq 10B.10 

J Rotational inertia of the wall panel and 
attached masses, kgm2 

Eqs 10.14, 10.15, 10.17, Table 10.12, Eqs 
10.29, 10B.8, 10B.30 

Janc Rotational inertia of ancillary masses, 
kgm2 

Eqs 10.15, 10B.8 

Jbo Rotational inertia of the bottom part of the 
panel about its centroid, kgm2 

Eqs 10.15, 10B.11 

Jbo Polar moment of inertia about centroid, 
kgm2 

Eqs 10B.8, 10B.11 

Jto Rotational inertia of the top part of the 
panel about its centroid 

Eqs 10.15, 10B.8 

k In-plane stiffness of walls and piers, N/mm Eqs 10.51, 10.52 

KA  Section 10.9.2 

KR Seismic force reduction factor for in-plane 
seismic force 

Coefficient proposed in lieu of Sp and K  

Eq 10.53, Table 10.15 

L Span of diaphragm, m Eq 10.8, 10.54, 10.55 

l Length of header Section 10.8.5.1 

lsp Clear length of spandrel between adjacent 
wall piers  

Eqs 10.35, 10.37, 10.38, 10.40, 10.41, 
10.42, 10.43, 10.44, 10.46, 10.48 
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Symbol Meaning Comments 

Lw Length of wall Eqs 10.31, 10.33 

M Moment capacity of the panel Eq 10.9 

M.F  Eq 10A.4 

M1, Mi, Mn Moment imposed on wall/pier elements Figure 10.72 

m Mass, kg  Eq 10B.11 

mi Seismic mass at the level of the 
diaphragm (level i) 

Section 10.10.5.1, Figure 10.78 

N(T1,D) Near fault factor determined from 
Clause 3.1.6, NZS 1170.5 

Eq 10.53 

n Number of recesses Eq 10.10 

N1, Ni, Nn Axial loads on pier elements Figure 10.72 

P Superimposed and dead load at top of 
wall/pier 

Eqs 10.31, 10.32, 10.33, 10.34 

P Load applied to the top of panel P is assumed to act through the pivot at 
the top of the wall 

Section 10.8.5.1, 10.8.5.2 Step 2, 3 & 4, 
Eqs 10.9, 10.12, 10.13, 10.15, 10.28 

p Depth of mortar recess, mm Eq 10.10, Figure 10.62 

P-∆ P- delta Section 10.8 

pp Mean axial stress due to superimposed 
and dead load in the adjacent wall piers 

Eq 10.36 

psp Axial stress in the spandrel Eqs 10.35, 10.37, 10.38, 10.39, 10.40, 
10.41, 10.42, 10.43, 10.46, 10.47, 10.48, 
10.49 

Pw Self-weight of wall and pier Eqs 10.31, 10.32, 10.33, Figure 10.65, EQ 
10.34 

Q Live load Section 10.10.5.2 

Q1, Qi, Qn Shear in pier element Figure 10.72 

R Return period factor, Ru determined from 
Clause 3.1.5, NZS 1170.5 

Eq 10.16 

ra  Eq 10.44, Figure 10.69 

ri  Eqs 10.44, 10.45, Figure 10.69 

ro  Eq 10.45, Figure 10.69 

RP Risk factor for parts as defined in 
NZS 1170.5  

Eq 10.18, Section 10.8.5.2 Step 13 

Ru Return period factor for ultimate limit state 
as defined in NZS 1170.5 

Eq 10.53 

Si Sway potential index Eq 10.50 

Sp Structural performance factor in 
accordance with NZS 1170.5 

Section 10.8.5.2, 10.10.2.1, 10.10.5.1, 
10.10.8 

SW Structural weakness  
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Symbol Meaning Comments 

t Depth of header Section 10.8.5.1 

t  Effective thickness, mm Varies with position 

Section 10.8.5.2 Step 2, 3 & 4, Eq 10B.22 

T1 Fundamental period of the building, sec. Eq 10.53 

Td Fundamental period of diaphragm, sec. Eqs 10.54, 10.55 

tgross Overall thickness of wall, mm Varies with position 

Eq 10.10 

tl Effective thickness of walls below the 
diaphragm, m 

Eq 10.8, Figure 10.59 

tnom Nominal thickness of wall excluding 
pointing, mm 

Varies with position 

Eqs 10.9, 10.10, Section 10.8.5.2 Step 2 
& 3, Eqs 10.33, 10B.22  

Tp Effective period of parts, sec. Eqs 10.14, 10.16, 10.18, 10.19, 10.23, 
10.24, 10B.15, 10B.16, 10B.17, 10B.18, 
10B.24, 10B.25, 10B.31 

tu Effective thickness of walls above the 
diaphragm, m 

Eq 10.8, Figure 10.59 

V Probable shear strength capacity  

Vdpc Capacity of a slip plane for no slip Eq 10.34 

Vdt In-plane diagonal tensile strength capacity 
of pier and  wall 

Eq 10.30 

Vfl Peak flexural capacity of spandrel Figure 10.68, Eqs 10.35, 10.43 

Vfl,r Residual flexural strength capacity Figure 10.68, Eqs 10.37, 10.46 

(Vprob)global, base  Figure 10.75 

(Vprob)line, i  Section 10.9.2 

(Vprob)wall1,wall2  Figure 10.77 

Vr In-plane rocking strength capacity of pier 
and wall 

Eq 10.32, Figure 10.66 

Vs In-plane bed-joint shear strength capacity 
of pier and  wall 

Eq 10.33, Figures 10.66, 10.68 

Vs1  Eqs 10.39, 10.47 

Vs2  Eqs 10.40, 10.48 

Vs,r Residual spandrel shear strength capacity 
or residual wall sliding shear strength 
capacity 

Eq 10.33, Figure 10.68, Eqs 10.41, 10.49 

Vtc In-plane toe-crushing strength capacity of 
pier and  wall 

Eq 10.31 

Vtc,r  Figure 10.66 

W Weight of the wall and pier Section 10.8.5.2 Step 3, Eqs 10.28, 
10B.11 

Wb Weight of the bottom part of the panel Section 10.8.5.1, 10.8.5.2 Step 2 & 14, 
Eqs 10.12, 10.13, 10.15, 10.17, 10.21 
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Symbol Meaning Comments 

Wt Weight of the top part of the panel Section 10.8.5.1, 10.8.5.2 Step 2 & 14, 
Eqs 10.12, 10.13, 10.15, 10.17, 10.21 

Wtrib Uniformly distributed tributary weight Eqs 10.54, 10.55 

yb Height of the centroid of Wb from the pivot 
at the bottom of the panel 

Eqs 10.12, 10.13, 10.15, 10.17, 10.21, 
Sections 10B.2.6, 10B.2.7, 10B.2.8, 
10B.3.2, 10B.3.3 

yt Height from the centroid of Wt to the pivot 
at the top of the panel 

Eqs 10.12, 10.13, 10.15, 10.17, 10.21 

Z Hazard factor as defined in NZS 1170.5  Eq 10.53 

αa Arch half angle of embrace Eqs 10.43, 10.44, 10.45, 10.47, 10.48, 
10.49 

αht t/l ratio correction factor Eqs 10A.1, 10A.3 

αtl t/l ratio correction factor Eqs 10A.1, 10A.2 

αw Diaphragm stiffness modification factor 
taking into account boundary walls 

Eqs 10.7, 10.8 

β  Factor to correct nonlinear stress 
distribution 

Eq 10.30, Table 10.13 

β1  Section 10.9.2 

βs Spandrel aspect ratio Eq 10.38 

 Participation factor for rocking system This factor relates the deflection at the 
mid-height hinge to that obtained from the 
spectrum for a simple oscillator of the 
same effective period and damping 

Eqs 10.17, 10.18, 10.25, 10B.21, 10B.32 

 Horizontal displacement, mm Eq 10B.16 

d	 Horizontal displacement of diaphragm Eq 10.54 

i Deflection that would cause instability of a 
face-loaded wall 

Wb, Wt and P are the only forces applying 
for this calculation 

Eqs 10.11, Table 10.12, Eqs 10B.6, 
10B.16, 10B.30, Section 18.8.5.2 Step 6, 
Eq 10.20 

m An assumed maximum useful deflection = 
0.6 ∆i and 0.3∆i for simply-supported and 
cantilever walls respectively 

Used for calculating deflection response 
capacity 

Section 18.8.5.2 Step 6, Eqs 10.20, 10B.6 

t An assumed maximum useful deflection = 
0.6Δm and 0.8Δm for simply-supported and 
cantilever walls respectively 

Used for calculating fundamental period of 
face-loaded rocking wall 

Eq 10B.16 

tc.r Deformation at the onset of toe crushing Section 10.8.6.2, Figure 10.66 

y Yield displacement Section 10.8.6.2, Figure 10.66 

y	 Yield rotation fo the spandrel Figure 10.68, Table 10.14 

 Structural ductility factor in accordance 
with NZS 1170.5 

Sections 10.8.5.2, 10.10.2.1, 10.10.5.1, 
10.10.8 

dpc DPC coefficient of friction Eq 10.34 
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Course A course refers to a row of units stacked on top of one another. 

Cross wall An interior wall that extends from the floor to the underside of the floor above or to 
the ceiling, securely fastened to each and capable of resisting lateral forces. 

Dead load The weight of the building materials that make up a building, including its structure, 
enclosure and architectural finishes. The dead load is supported by the structure 
(walls, floors and roof). 

Diaphragm A horizontal structural element (usually suspended floor or ceiling or a braced roof 
structure) that is strongly connected to the walls around it and distributes 
earthquake lateral forces to vertical elements, such as walls, of the lateral force 
resisting system. Diaphragms can be classified as flexible or rigid. 

Dimension When used alone to describe masonry units, means nominal dimension. 

Ductility The ability of a structure to sustain its load-carrying capacity and dissipate energy 
when it is subjected to cyclic inelastic displacements during an earthquake. 

Earthquake-Prone 
Building (EQP) 

A legally defined category which describes a building that has been assessed as 
likely to have its ultimate limit state capacity exceeded in moderate earthquake 
shaking (which is defined in the regulations as being one third of the size of the 
shaking that a new building would be designed for on that site). A building having 
seismic capacity less than 34%NBS.  

Earthquake Risk 
Building (ERB) 

A building having seismic capacity less than 67%NBS. 

Face-loaded walls Walls subjected to out-of-plane shaking. Also see Out-of-plane load. 

Flexible diaphragm A diaphragm which for practical purposes is considered so flexible that it is unable 
to transfer the earthquake loads to shear walls even if the floors/roof are well 
connected to the walls. Floors and roofs constructed of timber, steel, or precast 
concrete without reinforced concrete topping fall in this category. 

Gravity load The load applied in a vertical direction, including the weight of building materials 
(dead load), environmental loads such as snow, and moveable building contents 
(live load). 

Gross area The total cross-sectional area of a section through an element bounded by its 
external perimeter faces without reduction for the area of cells and re-entrant 
spaces. 

In-plane load Seismic load acting along the wall length. 

In-plane walls Walls loaded along its length. Also referred as in-plane loaded wall. 

Irregular building A building that has a sudden change in the shape of plan is considered to have a 
horizontal irregularity. A building that changes shape up its height (such as setbacks 
or overhangs) or is missing significant load-bearing walls is considered to have a 
vertical irregularity. In general, irregular buildings do not perform as well as regular 
buildings perform in earthquakes. 

Lateral load Load acting in the horizontal direction, which can be due to wind or earthquake 
effects. 

Leaf See Wythe. 

Load path A path through which vertical or seismic forces travel from the point of their origin to 
the foundation and, ultimately, to the supporting soil. 

Load See Action. 

Low-strength masonry Masonry laid in weak mortar; such as weak cement/sand or lime/sand mortar. 

Masonry unit A preformed component intended for use in masonry construction. 

Masonry Any construction in units of clay, stone or concrete laid to a bond and joined 
together with mortar. 
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Mortar The cement/lime/sand mix in which masonry units are bedded. 

Mullion A vertical member, as of stone or wood, between the lights of a window, the panels 
in wainscoting, or the like. 

Net area The gross cross-sectional area of the wall less the area of un-grouted areas or 
penetrations. 

Out-of-plane load Seismic load (earthquake shaking) acting normally (perpendicular) or at right angles 
to the wall surface. Walls subjected to out-of-plane shaking are also known as face-
loaded walls. Walls are weaker and less stable under out-of-plane than under in-
plane seismic loads. 

Partition A non-load-bearing wall which is separated so as not to be part of the seismic 
resisting structure. 

Party wall A party wall (occasionally party-wall or parting wall) is a dividing partition between 
two adjoining buildings or units that is shared by the tenants of each residence or 
business.  

Pier A portion of wall between doors, windows or similar structures. 

Pointing (masonry) Troweling mortar into a masonry joint after the masonry units have been laid. Higher 
quality mortar is used than for the brickwork.  

Primary element An element which is relied on as part of the seismic force resisting system. 

Regular building see Irregular building. 

Return wall A short wall usually perpendicular to, and at the end of, a freestanding wall to 
increase its structural stability. 

Rigid diaphragm A suspended floor, roof or ceiling structure that is able to transfer lateral loads to the 
walls with negligible horizontal deformation of the diaphragm. Floors or roofs made 
from reinforced concrete, such as reinforced concrete slabs, fall into this category. 

Running or stretcher 
bond 

The unit set out when the units of each course overlap the units in the preceding 
course by between 25% and 75% of the length of the units. 

Seismic hazard The potential for damage caused by earthquakes. The level of hazard depends on 
the magnitude of probable earthquakes, the type of fault, the distance from faults 
associated with those earthquakes, and the type of soil at the site. 

Seismic system That portion of the structure which is considered to provide the earthquake 
resistance to the entire structure. 

Shear wall A wall which is subjected to lateral loads due to wind or earthquakes acting parallel 
to the direction of an earthquake load being considered (also known as an in-plane 
wall). Walls are stronger and stiffer in plane than out of plane. 

Special study A procedure for justifying a departure from these guidelines or determining 
information not covered by them. Special studies are outside the scope of these 
guidelines. 

Stack bond The unit set out when the units of each course do not overlap the units of the 
preceding course by the amount specified for running or stretcher bond. 

Strength, design The nominal strength multiplied by the appropriate strength reduction factor. 

Strength, probable The theoretical strength of a component section, calculated using the section 
dimensions as detailed and the theoretical characteristic material strengths as 
defined in these guidelines. 

Strength, required The strength of a component section required to resist combinations of actions for 
ultimate limit states as specified in AS/NZS 1170 Part 0. 

Structural element Component of a building that provides gravity and lateral load resistance and is part 
of a continuous load path. Walls are key structural elements in all masonry 
buildings. 
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be irregular and made to fit in at ends of walls and around drainpipes with half widths and 
other cut bricks.  
 
English bond has alternating header and stretcher courses (Figure 10.6(c)). 
 

 
 

 

(a) Common bond (b) Running bond 

  
 

(c) English bond (d) Flemish bond 

Figure 10.6: Different types of brick masonry bonds 

Other bond patterns used in New Zealand include Running bond (Figure 10.6(b)) and 
Flemish bond (Figure 10.6(d)). Running bond (stretcher courses only) often indicates the 
presence of a cavity wall. Flemish bond (alternating headers and stretchers in every course) 
is the least common bond pattern and is generally found between openings on an upper 
storey; for example, on piers between windows.  

Stone masonry 

Stone masonry buildings in New Zealand are mainly built with igneous rocks such as 
basalt and scoria, or sedimentary rocks such as limestone. Greywacke, which is closely 
related to schist, is also used in some parts of the country. Trachyte, dolerite, and 
combinations of these are also used.  

Wall texture 

Wall texture describes the disposition of the stone courses and vertical joints. There are 
three different categories (Figure 10.7): ashlar (squared stone); rubble (broken stone); and 
cobble stones (field stone), which is less common.  
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Wall cross section 

It is usually not possible to establish the cross section characteristics of a stone masonry 
wall from the bond pattern. More detailed inspection is required to identify any 
connections between the wythes; determine what material the core is composed of; and 
locate any voids, a cavity, or the presence of other elements such as steel ties. All of these 
contribute to determining the wall’s structural properties. 

 
(a) Dressed stone in outer 

leaves and “rubble” fill  
(b) Stone facing and 
brickwork backing  

(c) Stone facing and 
concrete core  

Figure 10.9: Stone masonry cross sections in New Zealand. Representative cases observed 
in Christchurch after the Canterbury earthquakes (Marta Giaretton) 

Concrete block masonry 

Although solid concrete masonry was used in New Zealand from the 1880s, hollow 
concrete block masonry was not used widely until the late 1950s. Masonry was usually 
constructed in running bond, but stacked bond was sometimes used for architectural effect.  
 
From the 1960s onwards, masonry was usually constructed with one wythe 190 mm thick, 
although this was sometimes 140 mm thick. Cavity construction, involving two wythes 
with a cavity between, was mostly used for residential or commercial office construction 
but occasionally for industrial buildings. The external wythe was usually 90 mm thick and 
the interior wythe was either 90 mm or 140 mm. Cavity construction was often used for 
infills, with a bounding frame of either concrete or encased steelwork.  
 
To begin with, reinforcement in concrete masonry was usually quite sparse, with vertical 
bars tending to be placed at window and door openings and wall ends, corners and 
intersections, and horizontal bars at sill and heads and the tops of walls or at floor levels. 
Early on, it was common to fill just the reinforced cells. Later, when the depressed web 
open-ended bond beam blocks became more available, more closely spaced vertical 
reinforcement became more practicable. When the depressed web open-ended bond beam 
blocks (style 20.16) became available without excessive distortion from drying shrinkage, 
these tended to replace the standard hollow blocks for construction of the whole wall (with 
specials at ends, lintels and the like).  
 
Wire reinforcement formed into a ladder structure (“Bloklok” or a similar proprietary 
product) was common in cavity construction. Two wires ran in the mortar in bed joints, 
joined across the cavity by another wire at regular centres and acting as cavity ties.  
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 wall-diaphragm connections: steel angle or timber joist/ribbon plate with either grouted 
bars or bolts/external plate, blocking between joists notched into masonry, external 
pinning to timber beam end or to concrete beam or floor, through rods with external 
plates, new isolated padstones, new bond beams 

 diaphragm strengthening: plywood overlay floor or roof sarking, plywood ceiling, 
plywood/light gauge steel composite, plasterboard ceiling, thin concrete 
overlay/topping, elastic cross bracing, semi-ductile cross bracing (e.g. Proving ring), 
replacement floor over/below with new diaphragm 

 in-plane wall strengthening/ new primary strengthening elements: sprayed concrete 
overlay, vertical post-tensioning, internal horizontal reinforcement or external 
horizontal post-tensioning, bed-joint reinforcement, composite reinforced concrete 
boundary or local reinforcement elements, composite FRP boundary or local 
reinforcement elements, nominally ductile concrete walls or punched wall/frame or 
reinforced concrete masonry walls, nominally ductile steel concentric or cross bracing, 
limited ductility steel moment frame or concrete frame or concrete walls or timber 
walls, ductile eccentrically braced frame/K-frames, ductile concrete coupled or rocking 
walls, or tie to new adjacent (new) structure 

 reinforcement at wall intersections in plan: removal and rebuilding of bricks with inter-
bonding, bed-joint ties, drilled and grouted ties, metalwork reinforcing internal corner, 
grouting of crack 

 foundation strengthening: mass underpinning, grout injection, concentric/balanced re-
piling, eccentric re-piling with foundation beams, mini piling/ground anchors 

 façade wythe ties: helical steel mechanical engagement – small diameter, steel 
mechanical engagement – medium diameter, epoxied steel rods/gauze sleeve, epoxied 
composite/non-metallic rods, brick header strengthening 

 canopies: reinforce or recast existing hanger embedment, new steel/cast iron posts, new 
cantilevered beams, deck reinforcement to mitigate overhead hazard, conversion to 
accessible balcony, base isolation.   

 
Figures 10.23 to 10.27 illustrate some of these techniques. A detailed table (Table 10.2) is 
included in Section 10.6.11. This table lists common strengthening techniques and 
particular features or issues to check for each method.  
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Figure 10.23: Bracing of wall against face load (Dunning Thornton) 

 

(a) Bent adhesive anchor 

 
(b) Through anchor with end plate (plate anchor) 

Figure 10.24: Wall-diaphragm connections (Ismail, 2012) 
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Failures of URM buildings (summarised in Figure 10.28) can be broadly categorised as: 

 local failures – these include the toppling of parapets, walls not carrying joists or 
beams under face load, and materials falling from damaged in-plane walls. These local 
failures could cause significant life-safety hazards, although buildings may still survive 
these failures.  

 global failures – these include failure modes leading to total collapse of a building due 
to such factors as loss of load path and deficient configuration. 

 

 
Figure 10.28: Failure modes of URM buildings 

In URM buildings, in-plane demands on walls decrease up the height of the walls. In-plane 
capacity also decreases with height as the vertical load decreases. In contrast, out-of-plane 
demands are greatest at the upper level of walls (Figure 10.29), but out-of plane capacity is 
lowest in these areas due to a lack of vertical load on them. Hence, the toppling of walls 
starts from the top unless these are tied to the diaphragm. 
 

 
Figure 10.29: Out-of-plane vibration of masonry walls are most pronounced at the top floor 

level (adapted from Tomazevic, 1999) 
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illustrates the response of face-loaded walls to the type of diaphragm and wall-diaphragm 
connections.  
 

 
Figure 10.38: Effect of types of diaphragm on face-loaded walls – a) inferior wall-to-wall 

connection and no diaphragm, b) good wall-to-wall connection and ring beam with flexible 
diaphragm, c) good wall-to-wall connection and rigid diaphragm  

Figures 10.39 and 10.40 show images of damage to masonry buildings due to collapse of 
walls under face load. 
 

 
Figure 10.39: Out-of-plane instability of wall under face load due to a lack of ties between 

the face-loaded wall and rest of the structure (Richard Sharpe) 

Gable end walls sit at the top of walls at the end of buildings with pitched roofs. If this 
triangular portion of the wall is not adequately attached to the roof or ceiling, it will rock as 
a free cantilever (similar to a chimney or parapet) so is vulnerable to collapse. This is one 
of the common types of out-of-plane failure of gable walls (Figure 10.40). 
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Rocking of URM piers may result in the crushing of pier end zones and, under sustained 
cyclic loading, bricks could delaminate if the mortar is weak. An example of this is shown 
in Figure 10.43, where the damage to the building is characterised by the rotation of entire 
piers.  
 

 
Figure 10.43: Rocking and delamination of bricks of a one-storey unreinforced brick 

masonry building with reinforced concrete roof slab (Bothara & Hiçyılmaz, 2008) 

 
Sliding shear can occur along a distinctly defined mortar course (Figure 10.44(a)) or over a 
limited length of several adjacent courses, with the length that slides increasing with height 
(Figure 10.44(b)). This can often be mistaken for diagonal tension failure, which is less 
common in walls with moderate to low axial forces.  
 

 

 
(a) Sliding shear failure along a defined plane at first floor level (Dunning Thornton) 
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(b) Stair-step crack sliding, in walls with low axial loads (Bothara) 

Figure 10.44: Sliding shear failure in a brick masonry building  

 
Alternatively, masonry piers subjected to shear forces can experience diagonal tension 
cracking, also known as X-cracking (Figure 10.45). Diagonal cracks develop when tensile 
stresses in the pier exceed the masonry tensile strength, which is inherently very low. This 
type of damage is typically observed in long and squat piers and on the bottom storey of 
buildings, where gravity loads are relatively large and the mortar is excessively strong.  
 

 

 
(a) Diagonal tension cracks to a brick pier. Note splitting of bricks (Dizhur) 
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Step 1  Gather documentation 

 Collect relevant information and documents about the building including drawings, 
design feature reports, calculations and specifications, and any historical material test 
results and inspection reports (if available). 

 If the building has been previously altered or strengthened, collect all available 
drawings, calculations and specifications of this work.  

 Study this information before proceeding with the on-site investigation.  

Step 2 Consider building complexity 

 Determine an assessment strategy based on an initial appraisal of the complexity of the 
building. This can be reviewed as the assessment progresses.  

 Although all aspects will need to be considered for all buildings, simplifications can be 
made for basic buildings e.g. one or two storey commercial, rectangular in plan. For 
these buildings the default material strengths are expected to be adequate without 
further consideration so that on-site testing, other than scratch testing of the bed joints 
to ascertain mortar type and quality, is not considered necessary. Foundation rotations 
are also not expected to have a significant effect so can be ignored.  

 Concentration of effort should be on assessing the score for face-loaded walls, 
connections from the walls to the diaphragms and the diaphragms (lateral deflection 
between supported walls). The score for the walls in plane will depend on the ability 
(stiffness) of the diaphragm to transfer the shears but the calculations required are 
likely to be simple irrespective of whether the diaphragms are rigid (concrete) or 
flexible (timber, steel braced). Behaviour can be assumed to be linear-elastic (ie ignore 
any non-linear behaviour).  

 Complexity is likely to be increased if a building has previously been retrofitted. Not 
all issues with the building will necessarily have been addressed in historical retrofits. 
Stiffness compatibility issues will often not have been considered or fully addressed. 

Step 3 Investigate on-site  

 Refer Section 10.6. 

 Evaluate how well the documentation describes the “as constructed” and, where 
appropriate, the “as strengthened” building. 

 Carry out a condition assessment of the existing building. 

 Complete any on-site retrieval of samples and test these. 

 Identify any site conditions that could potentially affect the building performance. 
(Refer Section 14). 

Step 4 Assign material properties 

 Start by using the probable material properties that are provided in Section 10.8, or 
establish actual probable values through intrusive testing (this may be a step you come 
back to depending on the outcome of your assessment). 

 Recognise that for basic buildings obtaining building-specific material strengths 
through testing may not be necessary to complete an assessment. 
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Step 5 Identify potential structural weaknesses and relative vulnerability 

 The first step is to identify all of the various components in the building and then to 
identify potential SWs related to these. 

 The identification of potential SWs in this type of building requires a good 
understanding of the issues discussed in Sections 10.2, 10.3 and 10.4.  

 Early recognition of SWs and their relative vulnerability and interdependence is likely 
to reduce assessment costs and focus the assessment effort. 

 Prior experience is considered essential when identifying the SWs in complex 
buildings. 

 Separate the various components into those that are part of the primary lateral load 
resisting system and those that are not (secondary components). Some components may 
be categorised as having both a primary lateral load resisting function (e.g. in-plane 
walls and shear connections to diaphragms) and a secondary function (e.g. face-loaded 
walls and supporting connections). 

 The relative vulnerability of various components in typical URM buildings is likely to 
be (refer also Figure 10.54):  

- Inadequately restrained elements located at height; such as street-facing façades, 
unrestrained parapets, chimneys, ornaments and gable end walls. Collapse of these 
components may not lead to building collapse but they are potential life-safety 
hazards and therefore their performance must be reflected in the overall building 
score. 

- Inadequate connection between face-loaded walls and floors/roof; little or no 
connection capacity will mean that the walls will not be laterally supported when 
the inertial wall forces are in a direction away from the building and then it can be 
easily concluded that the walls and/or connections will be unlikely to score above 
34%NBS, except perhaps in low-seismic regions. If observations indicate 
reasonable diaphragm action from the floors and/or roof, adequate connections will 
mean that the out-of-plane capacity of the face-loaded walls may now become the 
limiting aspect.  

- Out-of-plane instability of face-loaded walls. If the wall capacity is sufficient to 
meet the requirements set out for face-loaded walls, then the capacity of the 
diaphragms becomes important as the diaphragms are required to transfer the 
seismic loads from the face-loaded walls into the in-plane walls.  

- The in-plane capacity of walls: these are usually the least vulnerable components.  

Step 6 Assess component capacities  

 Calculate the seismic capacities from the most to the least vulnerable component, in 
turn. There may be little point in expending effort on refining existing capacities only 
to find that the capacity is significantly influenced by a more vulnerable item that will 
require addressing to meet earthquake-prone requirements or target performance levels. 
Connections from brick walls to floors/roof diaphragms are an example of this. Lack of 
ties in moderate to high seismic areas will invariably result in an earthquake-prone 
status for the masonry wall and therefore it may be more appropriate and useful to 
assess the wall as < 34%NBS and also calculate a capacity assuming ties are in place. 
This will inform on the likely effect of retrofit measures. 

 A component may consist of a number of individual elements. For example, the 
capacity of a penetrated wall (a component) loaded in-plane will need to consider the 
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likely behaviour of each of the piers and the spandrel regions between and above and 
below the openings respectively (the elements). For some components the capacity will 
be a function of the capacity of individual elements and the way in which the elements 
act together. To establish the capacity of a component may therefore require structural 
analysis of the component to determine the manner in which actions in the elements 
develop. 

 For each component assess whether or not exceeding its capacity (this may be more 
easily conceptualised as failure for these purposes) would lead to a life safety issue. If 
it is determined that it will not, then that component can be neglected in the assessment 
of the expected seismic performance of the structure. The same decisions may need to 
be made regarding the performance of elements within a component. 

Step 7 Analyse the global structure 

 In general, the complexity and extent of the analysis should reflect the complexity of 
the building.  

 Start with analyses of low sophistication, progressing to greater sophistication only as 
necessary. 

 An analysis of the primary lateral load resisting structure will be required to determine 
the relationship between the global capacity and the individual component actions. 

 The analysis undertaken will need to recognise that the capacity of components will not 
be limited to consideration of elastic behaviour. Elastic linear analysis will likely be the 
easiest to carry out but the assessor must recognise that restricting to elastic behaviour 
will likely lead to a conservatively low assessment score. 

 The analysis will need to consider the likely impacts of plan eccentricities (mass, 
stiffness and/or strength). 

Step 8 Assess global capacity  

 From the structural analyses determine the global capacity of the building. This will be 
the capacity of the building as a whole determined at the point that the most critical 
component of the primary lateral load resisting system reaches its determined capacity. 

 It may also be useful to determine the global capacity assuming successive critical 
components are addressed (retrofitted). This will inform on the extent of retrofit that 
would be required to achieve a target score. 

Step 9 Determine the demands and %NBS 

 Determine the global demand for the building from Section 5 and assess the global 
%NBS (global capacity/ global demand x 100). 

 Assess the demands on secondary components and parts of the building and assess 
%NBS for each (capacity/demand x 100).  

 List the %NBS values in a table. 

 The CSW will be the item in the table with the lowest %NBS score and that %NBS 
becomes the score for the building. 

 Review the items in the %NBS table to confirm that all relate to elements, the failure of 
which would lead to a life safety issue.  If not, revise the assessment to remove the 
non-life safety element from consideration.  
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Structural 
Mechanism 

Technique Comments/Issues 

Steel capping spanning between 
abutting frames or walls 

Anchorage depth down into mass of parapet to 
clamp down loose upper bricks 

Internal Post-tensioning Anchorage depth down into mass of parapet to 
clamp down loose upper bricks 

External post-tensioning Anchorage depth down into mass of parapet to 
clamp down loose upper bricks 

Internal bonded reinforcement Anchorage depth down into mass of parapet to 
clamp down loose upper bricks 

Near Surface Mounted (NSM) 
composite strips 

Parapet responds differently to different 
directions of load 

UV degradation 

Face-loaded 
walls 

Vertical steel mullions (Figure 10.23) Stiffness vs out-of-plane rocking/displacement 
capability important 

Regularity/robustness of attachment to wall is 
important 

Vertical timber mullions Stiffness vs out-of-plane rocking/displacement 
capability important 

Regularity/robustness of attachment to wall is 
important 

Horizontal  transoms spanning 
between abutting frames or walls 

Stiffness and attachment requirements need to 
consider wall above which gives clamping 
action to masonry at level of attachment 

Internal post-tensioning Durability 

Anchorage level and fixity 

Level of pre-stress to allow rocking without 
brittle crushing 

External post-tensioning As above 

Internal bonded reinforcement Maximum quantity to ensure ductile failure  

Anchorage beyond cracking points, and 
consider short un-bonded lengths 

Composite fibre overlay Preparation to give planar surface very involved 

Near Surface Mounted (NSM) 
composite strips 

Wall responds differently to different directions 
of load 

Bond important if in-plane capacity is not to be 
weakened 

Reinforced concrete overlay Wall responds differently to different directions 
of load 

Reinforced cementitious overlay Wall responds differently to different directions 
of load 

Ductility of reinforcement important for 
deflection capacity 

Grout saturation/injection Elastic improvement only: more suitable for low 
seismic zones and very weak materials 
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Structural 
Mechanism 

Technique Comments/Issues 

Connection of 
walls to 
diaphragms 

Steel angle with grouted bars 
(Figure 10.24(a)) 

Bar anchorage 

Diaphragm/bar eccentricity must be resolved 

Steel angle with bolts/external plate 
(Figure 10.24(b)) 

Diaphragm/bar eccentricity must be resolved 

Timber joist/ribbon plate with grouted 
bars 

Bar anchorage  

Diaphragm/bolt eccentricity causes bending of 
timber across grain - a potential point of 
weakness 

Timber joist/ribbon plate with 
bolts/external plate 

Diaphragm/bolt eccentricity causes bending of 
timber across grain - a potential point of 
weakness 

Blocking between joists notched into 
masonry 

Joist weak axis bending must be checked 

Tightness of fit of joists into pockets 

Degradation of joists 

External pinning to timber beam end Quality assurance/buildability of epoxy in timber 

Concentrated localised load 

Development in masonry (external plate 
preferred for high loads) 

External pinning to concrete beam or 
floor 

Development in masonry (external plate 
preferred for high loads) 

Concrete floor type (hollow pots, clinker 
concrete) 

Through rods with external plates Elastic elongation 

Concentrated localised load 

New isolated padstones Tightness of fit 

Resolution of eccentricity between masonry 
bearing and diaphragm connection 

New bond beams High degree of intervention 

Diaphragm 
strengthening 

Plywood overlay floor or roof 
sparking (Figure 10.25) 

Flexibility  

Requires continuous chord members and 
primary resistance elements 

Plywood ceiling As above, plus existing ceiling battening/fixings 
may not be robust or may be decayed 

Plywood/light gauge steel composite Stiffer but less ductile than ply-only 

Eccentricities between thin plate and 
connections must be resolved 

Plasterboard ceiling As ply ceiling but less ductile 

Prevention of future modification/removal 

Thin concrete overlay/topping Thickness for adequate reinforcement 
Additional mass 

Ductility capacity of non-traditional 
reinforcement 

Buckling restraint/bond to existing structure 
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Structural 
Mechanism 

Technique Comments/Issues 

Elastic cross bracing Stiffness relative to wall out-of-plane capacity 

Edge distribution members and chords critical 

Concentration of loads at connections 

Semi-ductile cross bracing (e.g. 
Proving ring) 

As elastic 

Energy absorption benefit not easily quantified 
without sophisticated analysis 

Replacement floor over/below with 
new diaphragm 

Design as new structure 

In-plane wall 
strengthening 

New primary 
strengthening 
elements    
(Figure 10.26) 

Sprayed concrete overlay Restraint to existing floor/ roof structure  

Out-of-plane capacity of wall 

Ductility capacity if used very dependent on 
aspect ratio 

Chords 

Foundation capacity needs to be checked 
(uplift/rocking) 

Internal vertical post-tensioning Ensure pre-stress limited to ensure no brittle 
failure 

See out-of-plane issues also 

External vertical post-tensioning Ensure pre-stress limited to ensure no brittle 
failure 

See out-of-plane issues also 

Internal horizontal reinforcement Coring/drilling difficult 

Stressing horizontally requires good vertical 
(perpendicular) mortar placement and quality 

External horizontal post-tensioning Stressing horizontally requires good vertical 
(perpendicular) mortar placement and quality 

Bed-joint reinforcement Workmanship critical 

Low quantities of reinforcement only possible 

Composite reinforced concrete 
boundary or local reinforcement 
elements 

Development at ends/nodes 

Bond to existing 

Composite FRP boundary or local 
reinforcement elements 

As above plus stiffness compatibility with 
existing 

Nominally ductile concrete walls or 
punched wall/frame 

High foundation loads result 

Nominally ductile reinforced concrete 
masonry walls 

Stiffness compatibility considering geometry 
(including foundation movement) important 

Nominally ductile steel concentric or 
cross bracing 

Stiffness compatibility assessment critical 
considering element flexibility, plan position and 
diaphragm stiffness 

Drag beams usually required 

Limited ductility steel moment Frame Flexibility/stiffness compatibility very important 

Limited ductility concrete frame Flexibility/stiffness compatibility important 
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Structural 
Mechanism 

Technique Comments/Issues 

Limited ductility concrete walls Assess effectiveness of ductility, including 
foundation movements 

Ensure compatibility with any elements cast 
against 

Drag beams often required 

Limited ductility timber walls Flexibility/stiffness compatibility very important 

Drag beams often required 

Ductile EBF/K-frames Element ductility demand vs building ductility 
assessment important 

Drag beams usually required 

Ductile concrete coupled or rocking 
walls 

Element ductility demand vs building ductility 
assessment important 

Ensure compatibility with any elements cast 
against drag beams often required 

Tie to new adjacent (new) structure Elastic elongation and robustness of ties to be 
considered 

Higher level of strengthening likely to be 
required 

Reinforcement at 
wall intersections 
in plan 

Removal and rebuilding of bricks 
with inter-bonding 

Shear connection only with capacity reduced 
considering adhesion and tightness of fit 

Disturbance of bond to adjacent bricks 

Bed joint ties Small reinforcement only practical but can be 
well distributed 

Care with resolving resultant thrust at any bends 

Drilled and grouted ties Tension only: consider shear capacity 

Depth to develop capacity typically large 

Compatibility with face-load spanning of wall 

Metalwork reinforcing internal corner Attachment to masonry 

Small end-distance in abutting wall can mean 
negligible tension capacity 

Grouting of crack Shear friction only: tension mechanism also 
required 

Stabilises any dilation but does not allow 
recovery 

Foundation 
strengthening 

Mass underpinning Creates hard point in softer/swellable soils 

Even support critical 

Grout injection Creates hard point in softer/swellable soils 

Difficult to quantify accurately 

Concentric/balanced re-piling Localised “needles” through walls must provide 
sufficient bearing for masonry 

Eccentric re-piling with foundation 
beams 

Stiffness of found beams important to not rotate 
walls out-of-plane 

Mini piling/ground anchors Cyclic bond less than static bond 

Testing – only static practical 

Vulnerable to bucking if liquefaction 
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Structural 
Mechanism 

Technique Comments/Issues 

Pile type: vertical stiffness and pre-
loading 

Pre-loading dictates load position  

Pre-loading important if new foundations less 
stiff than existing 

Dynamic distribution between new and old likely 
different than static 

Effects of liquefaction must be considered: may 
create limiting upper bound to strengthening 
level 

Façade wythe 
ties 

Helical steel mechanical 
engagement – small diameter 

Low tension capacity, especially if cracked 

Steel mechanical engagement – 
medium diameter 

Some vierendeel action between wythes 

Durability 

Epoxied steel rods/gauze sleeve Some vierendeel action between wythes 

Epoxied composite/non-metallic rods Stiffness  

Brick header strengthening Additional new headers still brittle; can become 
overstressed under thermal/seasonal or 
foundation loadings in combination 

Canopies Reinforce or recast existing hanger 
embedment 

Degradation of steel 

Depth of embedment to ensure sufficient mass 
of bricks to prevent pull-out 

New steel/cast iron posts Propping of canopy can mitigate hazard from 
masonry falling to pavement 

Props in addition to hangars are not so critical 
with regard to traffic damage 

New cantilevered beams Co-ordination with clerestory/bressumer beam 

Backspan reaction on floor 

Deck reinforcement to mitigate 
overhead hazard 

Sacrificial/crushable layer to mitigate pavement 
hazard 

Conversion to accessible balcony Likely to achieves all of the above objectives for 
canopies and also has natural robustness as 
designed for additional live load.  Hazard still 
exists for balcony occupants 

Base isolation   A lack of sufficient gap around the building 

Vertically re-founding the building 



 

Se
Upd

1

1

Th
as
 
Th
co
at
se
 
N

B
in
va
be
an
va

W
en
as
ag

1

R
m
th
sim
 
To
an
ch
pr
m
w
jo
th
 
Ta

Br

So

Me

Ha

 

ection 10 - Seism
dated 22 April 2015 

 M0.7

 G0.7.1

his section p
ssociated m

hese value
omprehensiv
t any reliabl
ection is rec

Note: 

efore proce
nformation w
alue the info
e used to de
nd, therefor
alues given 

When assess
nsure that t
ssign differe
ge, weathere

 C0.7.2

ecommende
mortars, corr
hese tables a
mple on-sit

o ensure tha
ny weather
haracteristic
roperties wh

may not be re
whether the m
oint and ins
hrough the jo

able 10.3: Pr

rick hardness

oft 

edium 

ard 

mic Assessmen

Material

General 

provides de
aterials.  

s can be 
ve testing p
le judgemen

commended

eeding to on
will be col

formation w
etermine th
re, and whe
in this secti

ing the ma
the adopted
ent materia
ed condition

Clay bric

ed probabl
related again
are based on
te tests you 

at the test is
red or re
cs. This req
here the sur
epresentativ
mortar cond
spect the c
oint. 

robable stre

s Brick des

Scratches

Scratches

Does not s

t of Unreinforce

l Prope

efault proba

used for a
programme 
nt, some on
. 

n-site intrus
lected from

will add to th
he influence
ether testing
ion is warra

terial chara
d material p
l properties
n or other a

cks and m

e default m
nst hardness
n the use of
can use.  

s representa
emediated 
quirement is
rface mortar
ve of the mo
dition is uni
ondition of

ength param

scription 

s with aluminiu

s with 10 cent 

scratch with a

ed Masonry Buil

erties an

able materia

assessment 
(refer to Ap

n-site testing

sive testing,
m any inves
he reliability
e of any ma
g to refine 
anted. 

acteristics o
properties a
s to differen
spects.  

mortars

material pr
s, are given
f a simple s

ative of the 
surface m

s particularl
r may be ei
ortar at dep
iform across
f the extrac

meters for cl

um pick 

copper coin 

above tools 

Seismic As

ldings 

nd Weig

al properties

of URM 
ppendix 10A
g such as sc

, it is impor
stigation, ho
y of the ass

aterial param
that materi

of the buildi
are represen
nt masonry 

roperties fo
n in Tables 1
scratch test 

structural c
material pri
ly importan
ther weathe

pth. One rec
s the wall th
cted mortar

lay bricks (A

st

ssessment of U

IS

ghts 

s for clay br

buildings 
A for detail
cratching, et

rtant to sen
ow that wo
sessment. Se
meter on th
ial paramet

ing, survey 
ntative. It m
walls depe

or clay bri
10.3 and 10
but there ar

apability of
ior to ass
t for establi

ered or prev
commended
hickness is 
r dust as th

Almesfer et a

Probable bri
compressiv

trength, f’b (M

14 

26 

35 

Unreinforced Ma

SBN 978-0-4

rick masonr

in the abs
ls). Howeve

etc. as discu

nsibly under
ould be used
ensitivity an

he assessme
ter beyond 

 the entire 
may be app
ending on v

icks and li
0.4. The des
are a variety

f the materi
sessing the
lishing mort
viously rem
d technique 

to drill into
he drill bit 

al, 2014) 

ick 
ve 
MPa) 

Pro
tens

f

asonry Buildings

10-77
473-26634-9

ry and other

sence of a
er, to arrive

ussed in this

rstand what
d and what
nalyses can
nt outcome
the default

building to
propriate to

variations in

ime/cement
criptions in

y of similar,

als, remove
e hardness
tar material
ediated and
to establish

o the mortar
progresses

bable brick 
ile strength, 
fbt (MPa) 

1.7 

3.1 

4.2 

s 

7 

9 

r 

a 
e 
s 

t 
t 
n 
e 
t 

o 
o 
n 

t 
n 
, 

e 
s 
l 
d 
h 
r 
s 



 

Section 10 - Se
Updated 22 April 20

Table 10.4:

Mortar 
hardness 

Very soft 

Soft 

Medium 

Hard 

Very hard† 

Note: 
† When very

shear will 
head and b

   Values hig
material an

 
Values for 
 
In cases w
testing, the

 10.7.3

In cases wh
of extracte
established
compressiv
and mortar

Table 10.5:

Mortar stren

eismic Assessm
015 

 Probable s

Mortar des

Raked out 

Scratches 

Scratches w

Scratches 

Does not s

y hard mortar 
form diagonal 

bed joints. Such
gher than 0.6 m
nd the thicknes

adhesion m

where the pr
e following 

݂′୰ሺMPaሻ

Compre

here the com
ed masonry
d using Equ
ve strength 
r probable c

୫݂
ᇱ ሺMPaሻ

 Probable c

ngth, f’j (MPa)

0 

1 

2 

5 

8 

ment of Unreinfo

strength par

scription 

by finger pres

easily with fing

with finger na

using aluminiu

scratch with ab

is present it ca
cracks passing 

h a failure mode
may be consider
s of the mortar 

may be taken

obable mod
value may b

ൌ 0.12 ୠ݂
ᇱ 

essive s

mpressive s
y prisms, th
uation 10.2 
values of c

compressive

ൌ ቊ
0.75 ୠ݂

ᇱ

0.75 ୠ݂
ᇱ

compressive

) 

orced Masonry B

rameters for

ssure 

ger nails 

ils 

um pick 

bove tools 

an be expected 
through the bri

e is non-ductile
red with care/in
with respect to

n as half the

dulus of rup
be used (Al

strength 

strength of m
he probable
(Lumantarn

clay brick m
e strength va

.ହx	 ୨݂
ᇱ.ଷ			

.ହ														

e strength o

Probable m

Probable b

1

5

5

6

8

10

Seismic

Buildings 

r lime/cemen

Probable m
compress
strength

(MPa)

0-1

1-2

2-5

To be estab
from testing

To be estab

that walls subj
icks rather than

e. Very hard mo
nvestigation de

o the brick rough

e cohesion v

pture of clay
lmesfer et a

of maso

masonry ca
e masonry 
na et al, 20

masonry bas
alues from T

	for	 ୨݂
ᇱ  1

for	 ୨݂
ᇱ ൏ 1

of clay brick 

masonry com

brick compre

14 

5.4 

5.4 

6.7 

8.8 

0.1 

c Assessment o

nt mortar (A

mortar 
sive 

h, f’j 
) 

P
Co

lished 

lished from te

jected to in-pla
n a stair-stepped
ortar typically co
pending upon t
hness. 

values prov

y bricks can
al, 2014): 

onry 

annot be est
compressiv

014b). Table
sed on this 
Tables 10.3

MPa

MPa

masonry 

mpressive str

essive streng

26

8.6

8.6

10.6

14.0

16.1

of Unreinforced 

ISBN 978-

Almesfer et a

robable 
hesion, c 
(MPa) 

0.1 

0.3 

0.5 

0.7 

sting 

ane loads and f
d crack pattern t
ontains cement
the nature/roug

ided in Tab

nnot be esta

ablished fro
ve strength
e 10.5 pres
equation us
 and 10.4. 

rength, f’m (M

th, f’b (MPa) 

Masonry Buildi

10
-0-473-26634

al, 2014) 

Probable 
coefficient o
Friction, µf

 

0.3 

0.6 

0.8 

failing in diago
through the mo
t. 
ghness of the br

ble 10.4. 

ablished fro

…10.

om the testi
h, f’m, can 
sents probab
sing the bri

…10.2

Pa) 

35 

10.8 

10.8 

13.3 

17.5 

20.1 

ngs 

0-78 

4-9 

of 
 

onal 
rtar 

rick 

om 

1 

ing 
be 

ble 
ick 

2 



 

Se
Upd

1

Th
be
an

1

W
te

w

1

Th
co
th
el
up
 
Y

Sh

1

R

1

Y
re
 
Ta

Ma

Br

Oa

Tim

ection 10 - Seism
dated 22 April 2015 

 D0.7.4

he direct ten
e assumed t
nalysis are s

 D0.7.5

Where specif
ension streng

݂

where: 
c
µ
fa

 M0.7.6

he masonry
ompressive 
hat this val
lasticity bet
p to maximu

Young’s mod

ܧ

hear modulu

ܩ

 T0.7.7

efer to Sect

 M0.7.8

You can use
eliable meas

able 10.6: U

aterial 

rick masonry 

amaru stone m

mber 

mic Assessmen

Direct te

nsile streng
to be zero, 
satisfied for

Diagonal

fic material
gth, this ma

݂ୢ ୲ሺMPaሻ ൌ

  =  m
µf  =  m
fa  =  a

Modulus

y modulus o
strength in

lue of mod
tween 0.05݂
um strength

dulus of clay

ሻܽܲܯ୫ሺܧ ൌ

us of clay b

ሻܽܲܯ୫ሺܩ ൌ

Timber d

tion 11 for t

Material 

e the unit w
surements. 

nit weights 

masonry  

t of Unreinforce

nsile str

gth of mason
except whe

r vertical spa

l tensile 

 testing is n
ay be taken 

0.5ܿ	  ୟ݂ߤ

masonry bed
masonry co-
axial compr

 of elast

of elasticity
n accordanc
dulus of ela
୫݂
ᇱ  and 0.7݂

h.  

y brick mas

ൌ 300 ୫݂
ᇱ

brick masonr

ൌ ୫ܧ	0.4

diaphrag

timber diaph

unit wei

weights in T

ed Masonry Buil

rength o

nry, includi
en the requi
anning face

strength

not undertak
as: 

ߤ

d-joint cohe
-efficient of
ression stres

ticity and

y, Em, can b
ce with Equ
asticity has
୫݂
ᇱ  in order 

sonry can be

nry can be ta

m mater

hragm mate

ghts 

Table 10.6

Seismic As

ldings 

f mason

ing any cem
rements giv

e-loaded wa

h of mas

ken to deter

esion 
f friction 
ss due to gra

d shear 

be calculate
uation 10.4
s been esta
to represen

e taken as:

aken as (AS

rial prop

erial propert

as default 

ssessment of U

IS

ry 

ment renderi
ven in Secti
alls.  

sonry 

rmine proba

avity loads. 

modulus

d by using 
(Lumantarn

ablished as 
nt the elasti

CE 41-13):

perties 

ties. 

values if y

Unit weig

1

1

5-

Unreinforced Ma

SBN 978-0-4

ing and pla
ion 10.8.5.2

able mason

 

s of mas

the masonr
na et al, 20
 a chord m
ic stiffness 

: 

you do not 

ght (kN/m3) 

18 

16 

-6 

asonry Buildings

10-79
473-26634-9

ster, should
2 for elastic

ry diagonal

…10.3 

sonry 

ry probable
014b). Note
modulus of
appropriate

…10.4 

…10.5 

have more

s 

9 

9 

d 
c 

l 

e 
e 
f 
e 

e 



 

Section 10 - Se
Updated 22 April 20

 10.8

 10.8.1

This sectio
that make u
 
In the disp
of the dem

 10.8.2

The assess
therefore, t
equations 
1.0. 

 10.8.3

 10.8.3.1

Diaphragm
walls orien
the potenti
storey shea
 
The relativ
often quit
constructed
 
Flexibility 
walls and 
shears to m
appropriate
diaphragm
plane respo
 
When asse
strength an
 
The probab
in these gu
 
The deform
 
The deform
detrimenta
 
The diaph
deflections
2.5%. 
 

eismic Assessm
015 

Asses

Genera

on covers th
up a mason

lacement ba
mand is an in

Strengt

sment proc
the strength
and recomm

Diaphra

General

ms in URM 
nted perpen
ial to allow
ar and the to

ve lateral st
e low due
d of timber 

in a diaphr
thus affect 

minimal lev
ely allowed

m flexibility 
onse of the 

essing the c
nd deformat

ble strength
uidelines tha

mation capa

mation cap
al behaviour

hragm defo
s for check

ment of Unreinfo

sment 

al 

he assessme
nry building

ased proced
ntegral part 

th reduc

cedures in 
h reduction f
mended def

agms 

l 

buildings f
dicular to th

w shears to 
orsion due t

tiffness of 
e to the hi
or steel bra

ragm, if too 
the respon

vels, althou
d for in the 
is, therefore
walls.  

apacity of d
tion capaciti

h capacity s
at relate to t

acity will be

pacity is al
r of supporte

ormations s
king overall

orced Masonry B

of Com

nt of the ca
. 

dure for face
of the proce

ction fact

these guid
factor, , sh
fault probab

fulfil two pr
he direction
be transfer

to any plan e

the diaphra
igh stiffnes
acing.  

high, can r
nse of these
ugh this wil
global analy
e, essential 

diaphragms
ies.  

hould be de
the particula

e that for wh

lso limited 
ed walls or 

should be 
l building d

Seismic

Buildings 

mponent

apacity of th

e-loaded wa
edure. 

tors 

delines are 
hould be set
ble capaciti

rincipal fun
n of loading
rred betwee
eccentricitie

agms to the
ss of the w

reduce its ab
e walls, or 
ll not gener
ysis of the 
for proper u

s it is neces

etermined i
ar construct

hich the stre

to that w
of the build

included w
deformation

c Assessment o

t/Eleme

he various c

alls that is p

based on 
t equal to 1.
ies in this s

nctions. The
g and, if stif
en walls in
es. 

e walls pro
walls, parti

bility to pro
render its a
rally be an 
building. C
understandi

sary to con

n accordanc
tion materia

ength capac

which it is 
ding as a wh

when deter
ns against t

of Unreinforced 

ISBN 978-

ent Cap

omponents 

presented, th

probable s
.0. The prob
section assu

ey provide s
ff enough, th
n any level,

viding later
icularly for

ovide adequ
ability to tr
issue if re

Considering 
ing of both i

sider both t

ce with the 
al of the diap

ity can be su

expected w
hole.  

rmining the
the NZS 11

Masonry Buildi

10
-0-473-26634

pacity 

and elemen

he assessme

strengths an
bable streng
ume  equa

support to t
they also ha
, to resist t

ral support 
r diaphragm

uate support
ransfer stor
ecognised a

the effects 
in and out-o

their probab

 requiremen
phragm.  

sustained.  

will result 

e inter-stor
170.5 limit 

ngs 

0-80 

4-9 

nts 

ent 

nd, 
gth 
als 

the 
ave 
the 

is 
ms 

to 
rey 
and 

of 
of-

ble 

nts 

in 

rey 
of 



 

Se
Upd

In
en
Ri
ne

10

In
di
sh
(F
m
m
in
 

10

G

M
Th
na
re
di
20
ce
da
If 
flo
re
di

ection 10 - Seism
dated 22 April 2015 

n the section
nsure adequ
igid diaphr
ecessary rel

 D0.8.3.2
to

n order to 
iaphragm in
hould not 
Figure 10.5

masonry wy
maximum ac
nner wythe. 

Figur

 T0.8.3.3

General 

Most URM b
heir in-plan
ail connecti
eplicated as
irections eit
013c), refer
eiling overla
amage, and 
f the diaphra
ooring, thi

ecommend 
iaphragm st

mic Assessmen

ns below re
uate support
ragms wou
lative stiffne

Diaphrag
o face-lo

ensure that
n-plane disp

exceed 5
57). For ca
ythe is usua
cceptable di

re 10.57: Mid

Timber di

buildings in
ne deformat
ons (Wilso
s a shear b
ther paralle
r Figure 10.
ay, the degr
any prior r

agms have h
is has bee
that you u

tiffness coul

t of Unreinforce

ecommenda
t for face-lo
ld typically
ess with the

m deform
oaded wa

t the face-l
placement m
0% of th

avity constr
ally the lo
aphragm di

d-span diap

iaphragm

n New Zeal
tion respon

on et al., 2
beam (Wils
el or perpen
58, and are 
radation of 
remediation
had epoxy c
n observed
undertake a
ld be more t

ed Masonry Buil

ations are pr
oaded walls
y need to 
e walls.  

mation lim
alls 

loaded wall
measured w

he thicknes
ruction with
oad-bearing 
isplacement

hragm disp
flexible fou

ms 

land have fl
nse is stron
2013a) and
son et al., 
ndicular to 

significant
the diaphra

n such as re-
coatings tha
d to result
a sensitivit
than given h

Seismic As

ldings 

rovided for
s and flexib
be constru

mits to p

ls are adeq
with respect
ss of the 
h adequate
wythe and

t to be limit

lacement lim
undation  

flexible timb
ngly influen
d their glob

2013b). R
the orienta
ly influence

agm due to a
-nailing or 
at have pene
t in substa
ty analysis
here by an o

ssessment of U

IS

diaphragm
le (timber) 
cted of con

rovide ad

quately supp
t to the dia

supported 
e cavity tie
d this crite
ted to 50% 

mit for URM

ber floor an
nced by the 
bal respons
Responses c

tion of the 
ed by the pr
aspects such
varnishing 
etrated into 
antial stiffe
, recognisin
order of ma

Unreinforced Ma

SBN 978-0-4

m deformatio
and rigid d
ncrete to a

dequate s

pported, the
aphragm sup
d (face-load
es installed
erion will 
of the thick

 
M building on

nd ceiling d
e characteris
se is most 
can be sep

joists (Wil
resence of a
h as moistu
(Giongo, et
the joints b

fening. The
ing that th
agnitude or g

asonry Buildings

10-81
473-26634-9

on limits to
diaphragms.
achieve the

support 

e maximum
pport walls
ded) walls
, the inner
require the

kness of the

n a 

diaphragms.
stics of the
adequately

parated into
lson, et al.,
any floor or
ure or insect
t al., 2013).
between the
erefore, we
he effective
greater. 

s 

 

9 

o 
. 
e 

m 
s 
s             
r 
e 
e 

. 
e 
y 
o 
, 
r 
t 
. 
e 
e 
e 



Seismic Assessment of Unreinforced Masonry Buildings 

 

Section 10 - Seismic Assessment of Unreinforced Masonry Buildings  10-82 

Updated 22 April 2015 ISBN 978-0-473-26634-9 

 

Figure 10.58: Orthogonal diaphragm response due to joist orientation 

 
It is assumed here that the diaphragm is adequately secured to all perimeter walls via 
pocketing and/or anchorages to ensure that diaphragm deformation occurs rather than 
global sliding of the diaphragm on a ledge. It is also assumed that the URM boundary 
walls deform out-of-plane in collaboration with deformation of the flexible timber 
diaphragm. For non-rectangular diaphragms, use the mean dimensions of the two opposing 
edges of the diaphragm to establish the appropriate dimensions of an equivalent 
rectangular diaphragm. 
 
Note: 

Timber roofs of unreinforced masonry buildings were often built with both a roof and 
ceiling lining. As a result, roof diaphragms are likely to be significantly stiffer than the 
mid-height floor diaphragms if there are no ceilings on the mid-floors. Diagonal sarking in 
the roof diaphragm will also further increase its relative stiffness compared to the floor 
diaphragms.  
 
If the diaphragm you are assessing has an overlay or underlay (e.g. of plywood or pressed 
metal sheeting), consult the stiffness and strength criteria for improved diaphragms. You 
will still need to consider stiffness and ductility compatibility between the two. For 
example, it is likely that a stiff, brittle timber lath-and-plaster ceiling will delaminate 
before any straight sarking in the roof above can be fully mobilised. 
 
While the flooring, sarking and sheathing provide a shear load path across the diaphragm, 
it is necessary to consider the connections to the surrounding walls (refer to Section 10.8.4) 
and any drag or chord members. A solid URM wall may be able to act as a chord as it has 
sufficient in-plane capacity to transfer the chord loads directly to the ground. However, a 
punched URM wall with lintels only over the openings will have little tension capacity and 
may be the critical element in the assessment. Timber trusses and purlins, by their nature, 
only occur in finite lengths: their connections/splices designed for gravity loads may have 
little tie capacity.  
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Probable strength capacity 

The probable strength capacity of a timber diaphragm should be assessed in accordance 
with Section 11 of these guidelines.  

Probable deformation capacity 

Deformations in timber diaphragms should be assessed using the effective diaphragm 
stiffness defined below. 
 
The probable deformation capacity should be taken as the lower of the following, assessed 
for each direction: 

 L/33 for loading oriented perpendicular to the joists or L/53 for loading oriented 
parallel to the joists  

 Deformation limit to provide adequate support to face-loaded walls. Refer 
Section 10.8.3.2. 

 Deformation required to meet global inter-storey drift limit of 2.5% in accordance with 
NZS 1170.5. Refer Section 10.8.3.1. 

Effective diaphragm stiffness 

To determine the effective stiffness of a timber diaphragm, first assess the condition of the 
diaphragm using the information in Table 10.7. 
 
Table 10.7: Diaphragm condition assessment criteria (Giongo et al., 2014)  

Condition rating Condition description 

Poor Considerable borer; floorboard separation greater than 3 mm; water damage evident; 
nail rust extensive; significant timber degradation surrounding nails; floorboard joist 
connection appears loose and able to wobble 

Fair Little or no borer; less than 3 mm of floorboard separation; little or no signs of past 
water damage; some nail rust but integrity still fair; floorboard-to-joist connection has 
some but little movement; small degree of timber wear surrounding nails 

Good Timber free of borer; little separation of floorboards; no signs of past water damage; 
little or no nail rust; floorboard-to-joist connection tight, coherent and unable to wobble 

 
Next, select the diaphragm stiffness using Table 10.8 and accounting for both loading 
orientations.  
 
Note: 

While other diaphragm characteristics such as timber species, floor board width and 
thickness, and joist spacing and depth are known to influence diaphragm stiffness, their 
effects on stiffness can be neglected for the purposes of this assessment.  

Pretesting has indicated that re-nailing vintage timber floors using modern nail guns can 
provide a 20% increase in stiffness. 
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Table 10.8: Shear stiffness values† for straight sheathed vintage flexible timber floor 
diaphragms (Giongo et al., 2014) 

Direction of loading Joist continuity Condition rating Shear stiffness†, 
Gd (kN/m) 

Parallel to joists Continuous or discontinuous joists Good 350 

Fair 285 

Poor 225 

Perpendicular to 
joists†† 

Continuous joist, or discontinuous joist 
with reliable mechanical anchorage 

Good 265 

Fair 215 

Poor 170 

Discontinuous joist without reliable 
mechanical anchorage 

Good 210 

Fair 170 

Poor 135 

Note: 
† Values may be amplified by 20% when the diaphragm has been renailed using modern nails and nail guns 
†† Values should be interpolated when there is mixed continuity of joists or to account for continuous sheathing at joist 

splice 

 
For diaphragms constructed using other than straight sheathing, multiply the diaphragm 
stiffness by the values given in Table 10.9. If roof linings and ceiling linings are both 
assumed to be effective in providing stiffness, add their contributions. 
 
Table 10.9: Stiffness multipliers for other forms of flexible timber diaphragms (derived 
from ASCE, 2013) 

Type of diaphragm sheathing Multipliers to account for other 
sheathing types 

Single straight sheathing x 1.0 

Double straight sheathing 

 

Chorded x 7.5 

Unchorded x 3.5 

Single diagonal sheathing Chorded x 4.0 

Unchorded x 2.0 

Double diagonal sheathing or straight 
sheathing above diagonal sheathing 

Chorded x 9.0 

Unchorded x 4.5 

 
For typically-sized diaphragm penetrations (usually less than 10% of gross area) the 
reduced diaphragm shear stiffness, G’d, is given by Equation 10.6:  

ୢܩ
ᇱ ሺ݇ܰ/݉ሻ ൌ ౪

ౝ౨౩౩
 10.6… ୢܩ

where Anet and Agross refer to the net and the gross diaphragm plan area (in square metres).  
 
For non-typical sizes of diaphragm penetration, a special study should be undertaken to 
determine the influence of diaphragm penetration on diaphragm stiffness and strength. The 
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effective diaphragm stiffness must be modified further to account for stiffness of the URM 
boundary walls deforming in collaboration with the flexible timber diaphragm.  
 
Hence: 

ୣ,ୢܩ
ᇱ ሺkN/mሻ ൌ ୢܩ୵ߙ

ᇱ  …10.7 

where αw may be determined using any rational procedure to account for the stiffness and 
incompatibility of deformation modes arising from collaborative deformation of the URM 
walls displacing out-of-plane as fixed end flexure beams and the diaphragm deforming as a 
shear beam.  
 
In lieu of a special study, prior elastic analysis has suggested that Equation 10.8 provides 
adequate values for αw: 

α୵ ≅ 1  ൬
௧ℓ
య

ுℓ
య 

௧౫య

ு౫
య൰

మ



ாౣ
ீౚ
ᇲ  …10.8 

where 

 ℓ =  effective thickness of walls below the diaphragm, mݐ
 ୳ =  effective l thickness of walls above the diaphragm, mݐ
 ℓ =  height of wall below diaphragm, mܪ
  ୳ = height of wall above diaphragm, mܪ
Em = Young’s modulus of masonry, MPa 
  .depth of diaphragm, m = ܤ
  .span of diaphragm perpendicular to loading, m = ܮ

Refer to Figure 10.59 for definition of the above terms. 
 
For scenarios where the URM end walls are likely to provide no supplementary stiffness to 
the diaphragm, αw = 1.0 should be adopted. 
 

 
Figure 10.59: Schematics showing dimensions of diaphragm 
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Table 10.10: Default anchor probable shear strength capacities for anchors into masonry 
units only1. 

Anchorage type  Rod size Probable shear 
strength 

capacity2, 

 (kN) 

Bolts/steel rods fixed through and bearing against a timber 
member1,2 

M12 8.5 

M16 15 

M20 18.5 

Bolts/steel rods fixed through a steel member (washer) having a 
thickness of 6 mm or greater 

M16 20 

Note: 
1.  Anchors into mortar bed joints will have significantly lower shear capacities  
2.  Timber member to be at least 50 mm thick and MSG8 grade or better 
3.  For adhesive connectors embedment should be at least 200 mm into solid masonry 
 

 
Table 10.11: Default anchor probable tension pull-out capacities for 0m, >0.3m and > 3m of 
wall above the embedment) 

Mortar hardness Single-wythe wall 

(kN) 

Embedment 160 mm1 
into two-wythe wall 

(kN)  

Embedment 250 mm1 
into three-wythe wall 

(kN) 

0 >0.3 m(3) >3 m 0 >0.3 m(3) >3 m 0 >0.3 m(3) >3 m 

Very soft 
0.3 0.5 1 1 1.5 4 1.5 3 8 

Soft 
1 1.5 3 2.5 4 9 5 8 18 

Medium 
1.5 2.5 6 4 6.5 15 8 14 31 

Hard 
2.5 3.5 8 6 9 21 11 19 43 

Very hard 
>2.5(4) >4(4) >8(4) >6(4) >10(4) >21 >11(4) >20(4) >43(4) 

Notes: 
1. Representative value only: assumes drilling within 50 mm of far face of wall 
2. Simultaneous application of tension and shear loading need not be considered 
3. These values are intended to be used until there is >3 m of wall above the embedment. 
4. Values for very hard mortar may be substantiated by calculation but can be assumed to be at least those shown. 

 
The values in Table 10.11 are based on the pull-out of a region of brick, assuming cohesion 
or adhesion strength of the mortar on the faces of the bricks perpendicular to the 
application of the load factored by 0.5 and friction on the top and/or bottom faces (refer 
Figure 10.60), depending on the height of wall above the embedment as follows: 

 0 m (ie at the top of the wall) - adhesion only on the bottom and side faces 

 >0.3 m but < 3 m – adhesion on the top, bottom and side faces, friction on the top and 
bottom faces 

 >3 m – cohesion on the top, bottom and side faces, friction on the top and bottom faces. 
 
A factor of 0.5 has been included in these values to reflect the general reliability of 
mechanisms involving cohesion/adhesion and friction.  
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The direct tensile strength, f’t, should be ignored in capacity calculations unless there is no 
sign of pre-cracking in the wall at the section being considered and the demand is assessed 
assuming fully elastic behaviour and taking Sp =2 (synonymous with applying a 0.5 factor 
to the capacity) and cracking of the brickwork in the region of the section is not expected 
for loading in-plane.  
 

Inelastic displacement-based analysis for walls spanning vertically between 
supports 

Follow the steps below to assess the displacement response capability and displacement 
demand in order to determine the adequacy of the walls.  
 
Note:  

Appendix 10B provides some guidance on methods for determining key parameters. Refer 
to Figure 10B.1 for the notation employed. 

We have also provided some approximations you can use (listed after these steps) if wall 
panels are uniform within a storey (approximately rectangular in vertical and horizontal 
section and without openings). 

Charts are provided in Appendix 10C that allow assessment of %NBS for regular walls 
(vertically spanning and vertical cantilever) in terms of height to thickness ratio of the 
wall, gravity load on the wall and parameters defining the demand on the wall. 
 
The wall panel is assumed to form hinge lines at the points where effective horizontal 
restraint is assumed to be applied. The centre of compression on each of these hinge lines 
is assumed to form a pivot point. The height between these pivot points is the effective 
panel height h (in mm). At mid-height between these pivots, height h/2 from either, a third 
pivot point is assumed to form. 
 
The recommended Steps for assessment of walls following the displacement-based method 
are discussed below: 

Step1 

Divide the wall panel into two parts: a top part bounded by the upper pivot and the mid 
height between the top and bottom pivots; and a bottom part bounded by the mid-height 
pivot and the bottom pivot. 
 

Note: 

This division into two parts is based on the assumption that a significant crack will form at 
the mid height of the wall, where an effective hinge will form. The two parts are then 
assumed to remain effectively rigid. While this assumption is not always correct, the errors 
introduced by the resulting approximations are not significant.  

One example is that significant deformation occurs in the upper part of top-storey walls. In 
particular, where the tensile strength of the mortar is small the third hinge will not 
necessarily form at the mid height.  
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Step 2 

Calculate the weight of the wall parts: Wb (in N) of the bottom part and Wt (in N) of the top 
part, and the weight acting at the top of the storey, P (in N). 
 

Note: 

The weight of the wall should include any render and linings, but these should not be 
included in tnom or t (in mm) unless the renderings are integral with the wall. The weight 
acting on the top of the wall should include all roofs, floors (including partitions and 
ceilings and the seismic live load) and other features that are tributary to the wall. 

Step 3 

From the nominal thickness of the wall, tnom, calculate the effective thickness, t. 
 

Note: 

The effective thickness is the actual thickness minus the depth of the equivalent rectangular 
stress block. The reduction in thickness is intended to reflect that the walls will not rock 
about their edge but about the centre of the compressive stress block.  

The depth of the equivalent rectangular stress block should be calculated with caution, 
as the depth determined for static loads may increase under earthquake excitation. 
Appendix 10B suggests a reasonable value based on experiments, t = tnom (0.975-
0.025 P/W). The thickness calculated by this formula may be assumed to apply to any type 
of mortar, provided it is cohesive. For weaker (and softer) mortars, greater damping will 
compensate for any error in the calculated t. 

Step 4 

Assess the maximum distance, ep, from the centroid of the top part of the wall to the line of 
action of P. Refer to Figure 10B.1 for definition of eb, et and eo. Usually, the eccentricities 
eb and ep will each vary between 0 and t/2 (where t is the effective thickness of the wall). 
Exceptionally they may be negative, i.e. where P promotes instability due to its placement. 
 
When considering the restraint available from walls on foundations assume the foundation 
is the same width as the wall and use the following values for eb: 
 

0 if the factor of safety for bearing under the foundation, for dead load only 
(FOS), is equal to 1 

t/3 if FOS = 3 (commonly the case) 
t/4 if FOS = 2 

 

Note: 

Figure 10B.2 shows the positive directions for the eccentricities for the assumed direction 
of rotation (angle A at the bottom of the wall is positive for anti-clockwise rotation). 

The walls do not need to be rigidly attached or continuous with a very stiff section of wall 
beyond to qualify for an assumption of full flexural restraint. 
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Care should be taken not to assign the full value of eccentricity at the bottom of the wall if 
the foundations are indifferent and may themselves rock at moments less than those 
causing rocking in the wall. In this case, the wall might be considered to extend down to 
the supporting soil where a cautious appraisal should then establish the eccentricity. The 
eccentricity is then related to the centroid of the lower block in the usual way.  

Step 5 

Calculate the mid-height deflection, i, that would cause instability under static conditions. 
The following formula may be used to calculate this deflection. 

୧ ൌ


ଶ
 …10.11 

where: 

ܾ ൌ ୠܹ݁ୠ  ୲ܹሺ݁୭  ݁ୠ  ݁୲ሻ  ܲ൫݁୭  ݁ୠ  ݁୲  ݁୮൯ െሺ ୠܹݕୠ 
																																																																																		 ୲ܹݕ୲ሻ …10.12 

and: 

ܽ ൌ ୠܹݕୠ  ୲ܹሺ݄ െ ୲ሻݕ  ݄ܲ …10.13 

Note: 

The deflection that would cause instability in the walls is most directly determined from 
virtual work expressions, as noted in Appendix 10B. 

Step 6 

Assign the maximum usable deflection, m (in mm), as 0.6 i. 
 

Note: 

The lower value of the deflection for calculation of instability limits reflects that response 
predictions become difficult as the theoretical limit is approached. In particular, the 
response becomes overly dependent on the characteristics of the earthquake, and minor 
perturbances lead quickly to instability and collapse.  

Step 7 

Calculate the period of the wall, Tp, as four times the duration for the wall to return from a 
displaced position measured by t (in mm) to the vertical. The value of Δt is less than Δm. 
Research indicates that t = 0.6m =0.36i for the calculation of an effective period for use 
in an analysis using a linear response spectrum provides a close approximation to the 
results of more detailed methods. The period may be calculated from the following 
equation: 

୮ܶ ൌ 4.07ට


 …10.14 
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where J is the rotational inertia of the masses associated with Wb, Wt and P and any 
ancillary masses, and is given by the following equation: 

ܬ ൌ ୠ୭ܬ  ୲୭ܬ 
ଵ


ቄ ୠܹሾ݁ୠ

ଶ  ୠݕ
ଶሿ  ୲ܹሾሺ݁୭  ݁ୠ  ݁୲ሻଶ  ୲ଶሿݕ  ܲ ቂ൫݁୭  ݁ୠ 

݁୲  ݁୮൯
ଶ
ቃቅ   ୟ୬ୡ …10.15ܬ

where Jbo and Jto are mass moment of inertia of the bottom and top parts about their 
centroids, and Janc is the inertia of any ancillary masses, such as veneers, that are not 
integral with the wall but that contribute to the inertia.  
 
When treating cavity walls, make the following provisions: 

 When the veneer is much thinner than the main wythe, the veneer can be treated as an 
appendage. For inelastic analysis, the veneers can be accounted through Janc. 

 If both wythes are a one - brick (110 mm) thick, then these could be treated as 
independent walls. Allocate appropriate proportion of overburden on them and solve 
the problem in the usual way. 

 Where an accurate solution is the objective, solve the general problem with the 
kinematic constraint that the two walls deflect the same. 

 

Note: 

The equations are derived in Appendix 10B. You can use the method in this appendix to 
assess less common configurations as necessary. 

Step 8 

Calculate the design response coefficient Cp(Tp) in accordance with Section 8 NZS 1170.5 
taking p =1 and substituting C (Tp): 

୧൫ܥ ୮ܶ൯ ൌ ୦ୡ൫ܥ ୮ܶ൯ …10.16 

where: 
Chc(Tp) = the spectral shape factor ordinate, Ch(Tp), from NZS 1170.5 for 

Ground Class C and period Tp, provided that, solely for the purpose 
of calculating Chc(Tp), Tp need not be taken less than 0.5 sec. 

 
When calculating CHi from NZS 1170.5 for walls spanning vertically and held at the top, hi 
should be taken as the average of the heights of the points of support (typically these will 
be at the heights of the diaphragms). In the case of vertical cantilevers, hi should be 
measured to the point from which the wall is assumed to cantilever. If the wall is sitting on 
the ground and is laterally supported above, hi may be taken as half of the height to the 
point of support.  
 
If the wall is sitting on the ground and is not otherwise attached to the building it should be 
treated as an independent structure, not as a part. This will involve use of the appropriate 
ground spectrum for the site. 
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Note: 

The above substitution for Ci(Tp) has been necessary because the use of the tri-linear 
function given in NZS 1170.5 (Equations 8.4(1), 8.4(2) and 8.4(3) does not allow 
appropriate conversion from force to displacement demands. The revised Ci(Tp) converts 
to the following, with the numerical numbers available from NZS 1170.5 Table 3.1. 

 

 Ci(Tp) = 2.0 for Tp < 0.5sec 

 =  2.0(0.5/ Tp)
0.75   for  0.5 < Tp < 1.5sec 

 =  1.32/ Tp for  1.5 < Tp < 3sec 

 =  3.96/ Tp
2 for  Tp > 3sec 

 

Only 5% damping should be applied. Experiments show that expected levels of damping 
from impact are not realised: the mating surfaces at hinge lines tend to simply fold onto 
each other rather than impact. 

Step 9 

Calculate , the participation factor for the rocking system. This factor may be taken as:  
 

ߛ ൌ
ሺௐౘ௬ౘାௐ౪௬౪ሻ

ଶ
 …10.17 

Note: 

The participation factor relates the response deflection at the mid height of the wall to the 
response deflection for a simple oscillator of the same period and damping.  

Step 10 

From Cp(Tp), Tp, Rp and  calculate the displacement response, Dph (in mm) as:  

୮୦ܦ ൌ ൫ߛ ୮ܶ/2ߨ൯
ଶ
୮൫ܥ ୮ܶ൯. ܴ୮. ݃ ...10.18 

where: 
Cp(Tp) = the design response coefficient for face-loaded walls (refer Step 8 

above, and for more details refer to Section 10.10.3) 
Tp = Period of face-loaded wall, sec 
Rp = the part risk factor as given by Table 8.1, NZS 1170.5  
Cp(Tp) Rp ≤ 3.6. 

 
Note that with Tp expressed in seconds, the multiplied terms (Tp/2π)2 ×  Cp(Tp) × g may be 
closely approximated in metres by: 

൫ ୮ܶ/2ߨ൯
ଶ
ൈ ୮൫ܥ ୮ܶ൯ ൈ ݃ ൌ MIN൫ ୮ܶ/3, 1൯ …10.19 
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Step 11 

Calculate  

ܵܤܰ% ൌ 100 ൈ ∆୫	/ܦ୮୦ 	ൌ 60൫∆୧/ܦ୮୦൯  …10.20 

Note: 

The 0.6 factor applied to i reflects that response becomes very dependent on the 
characteristics of the earthquake for deflections larger than 0.6i.  

The previous version of these guidelines allowed a 20% increase in %NBS calculated by 
the above expression. However that is not justified now that different displacements are 
used for capacity and for the period and the subsequent calculation of demand. 
 
Note: 

Steps 12 to 14 are only required for anchorage design.  

Step 12 

Calculate the horizontal accelerations that would just force the rocking mechanism to form. 
The acceleration may be assumed to be constant over the height of the panel, reflecting that 
it is associated more with acceleration imposed by the supports than with accelerations 
associated with the wall deflecting away from the line of the supports. Express the 
acceleration as a coefficient, Cm, by dividing by g. 
 

Note: 

Again, virtual work proves the most direct means for calculating the acceleration. 
Appendix 10B shows how and derives the following expression for Cm, in which the 
ancillary masses are assumed part of Wb and Wt. 

ܥ ൌ 

ሺௐ್௬್ାௐ௬ሻ
 …10.21 

Note: 

To account for the initial enhancement of the capacity of the rocking mechanism due to 
tensile strength of mortar and possible rendering, we recommend that Cm be cautiously 
assessed when mortar and rendering are present or in the case of retrofit likely to be 
added. The value of Cm may also be too large to use for the design of connections. 
Accordingly, it is recommended that Cm need not be taken greater than the maximum part 
coefficient determined from Section 8 NZS 1170.5 setting Rp and p =1.0. 

Step 13 

Calculate Cp(0.75), which  is the value of Cp(Tp) for a part with a short period from 
NZS 1170.5 and define a seismic coefficient for the connections which is the lower of Cm, 
Cp(0.75) or 3.6   
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Note: 

Cp(0.75) is the short period ordinate of the design response coefficient for parts from 
NZS 1170.5, and 3.6g is the maximum value of Cp(Tp) required to be considered by 
NZS 1170.5 when Rp and p =1.0 . 

Step 14 

Calculate the required support reactions using the contributing weight of the walls above 
and below the connection (for typical configurations this will be the sum of Wb and Wt for 
the walls above and below the support accordingly) and the seismic coefficient determined 
in Step 13. 

Step 15 

Calculate   

%NBS  =  Capacity of connection from Section 10.8.4 x 100 …10.22 
Required support reaction from Step 14 
 

Note: 

If supports to face-loaded walls are being retrofitted, we recommend that the support 
connections are made stronger than the wall(s) and not less than required using a seismic 
coefficient of Cp(0.75), i.e. do not take advantage of a lower Cm value. 

Simplifications for regular walls 

You can use the following approximations if wall panels are uniform within a storey 
(approximately rectangular in vertical and horizontal section and without openings) and the 
inter-storey deflection does not exceed 1% of the storey height. The results are summarised 
in Table 10.12. 
 
The steps below relate to the steps for the general procedure set out above. 

Step 1 Divide the wall as before. 

Step 2 Calculate the weight of the wall, W (in N), and the weight applied at the top of the 
storey, P (in N). 

Step 3 Calculate the effective thickness as before, noting that it will be constant. 

Step 4 Calculate the eccentricities, eb, et and ep. Each of these may usually be taken as 
either t/2 or 0. 

Step 5 Calculate the instability deflection, i from the formulae in Table 10.12 for the 
particular case. 

Step 6 Assign the maximum usable deflection, m, for capacity as 60% of the instability 
deflection. 

Step 7 Calculate the period, which may be taken as 4.07√(J/a), where J and a are given 
in Table 10.12. Alternatively, where the wall is fairly thin (h/t is large), the period 
may be approximated as: 
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Vertical cantilevers 

Parameters for assessing vertical cantilevers, such as partitions and parapets are derived in 
Appendix 10B. Please consult this appendix for general cases.  
 
For parapets of uniform rectangular cross-section, you may use the following 
approximations. These steps relate to the steps set out earlier for the general procedure for 
walls spanning between vertical diaphragms. 

Step 1 You do not need to divide the parapet. Only one pivot is assumed to form: at the 
base. 

Step 2 The weight of the parapet is W (in N). P (in N) is zero. 

Step 3 The effective thickness is t (in mm) = 0.98tnom. 

Step 4 Only eb is relevant. It is equal to t/2. 

Step 5 The instability deflection measured at the top of the parapet i = t. 

Step 6 The maximum usable deflection measured at the top of the parapet m = 0.3i = 
0.3t. 

Step 7 The period may be calculated from the assumption that t = 0.8m = 0.24i. 

୮ܶ ൌ ට0.65݄ 1  ቀ௧

ቁ
ଶ
൨ …10.24 

in which h, the height of the parapet above the base pivot, and t, the thickness of 
the wall, are expressed in metres. The formulation is valid for P = 0, eb = t/2, yb = 
h/2 and approximating t = tnom. 

Step 8 Calculate Cp(Tp) (refer to Step 8 of the general procedure for walls spanning 
vertically between diaphragms). 

Step 9 Calculate  = 1.5/[1+(t/h)2] ≤ 1.5. …10.25 

Step 10 Calculate Dph from Cp(Tp), Tp and   and as before. 

Step 11 Calculate %NBS as for the general procedure for walls spanning between a floor 
and an upper floor or roof, from; 

ܵܤܰ% ൌ 100	∆୫/ܦ୮୦ ൌ 30	∆୧/ܦ୮୦ ൌ  ୮୦. ...10.26ܦ/ݐ	30

Note: 

Steps 12 to 14 are only required for anchorage design. 

Step 12 Calculate Cm = t/h. …10.27 

Step 13 Calculate Cp(0.75) which is the value of Cp(Tp) for a part with a short period from 
NZS 1170.5. and define a seismic coefficient for the connections which is the 
lower of Cm, Cp(0.75) and 3.6. 
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Step 14 Calculate the base shear from W, Cm and Cp(0.75). This base shear adds to the 
reaction at the roof level restraint. 

 
Note: 

Charts are provided in Appendix 10C that allow the %NBS to be calculated directly for 
various boundary conditions for regular walls cantilevering vertically, given h/tGross for the 
wall, gravity load on the wall and factors defining the demand. 

 

Gables 

Figure 10.63(a) shows a gable that is: 

 free along the vertical edge 

 simply supported along the top edge (at roof level), and   

 continuous at the bottom edge (ceiling or attic floor level).  
 
This somewhat unusual case is useful in establishing parameters for more complex cases. 
The following parameters can be derived from this gable: 

ܽ ൌ 


ሺ2ܹ  3ܲሻ …10.28 

ܬ ൌ ௐ

ଶସ
ሺ32ݐଶ  ݄ଶሻ  ଽ௧మ

ସ
 …10.29 

Note:  

In the above equations, W and P are total weights, not weights per unit length. Also note 
that the participation factor now has a maximum value of 2.0 (t << h, P = 0). 
 
These results can be used for the gable in Figure 10.63(b) to provide a cautious assessment 
that does not recognise all of the factors that could potentially enhance the performance of 
such gables, such as the beneficial effects of membrane action    
 
Note:  

There are several factors that enhance performance in gables like those shown in 
Figure 10.63(a), all of which relate to the occurrence of significant membrane action. 
Guidance on this aspect will be provided in future versions of this document when the 
necessary research (including testing) has been undertaken. (Please also refer to the 
following section on walls spanning horizontally and vertically.) 
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(a) Basic gable wall for defining parameters 

 

 
(b) Typical gable for which results from (a) can be applied 

Figure 10.63: Gable configurations  
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Refer to Figure 10.65 for the definition of heff. 
 
This failure mode occurs when the diagonal tensile strength of a wall or pier is exceeded 
by the principal stresses. It is one of the undesirable failure modes as it causes a rapid 
degradation in strength and stiffness after the formation of cracking, ultimately leading to 
loss of load path. For this reason a deformation limit of y for this failure mode is 
recommended. 
 
This failure mode is more common where axial stresses are high, piers are squatter and the 
tensile strength of masonry is low.  
 
Diagonal tension failure leads to formation of an inclined diagonal crack that commonly 
follows the path of bed and head joints through the masonry, because of the lower strength 
of mortar compared to brick. However, cracking through brick is also possible if the mortar 
is stronger. In New Zealand masonry, the crack pattern typically follows the mortar joint. 
 
For conditions where axial stresses on walls or piers are relatively low and the mortar 
strengths are also low compared to the splitting strengths of the masonry units, diagonal 
tension actions may be judged not to occur prior to bed-joint sliding. However, there is no 
available research to help determine a specific threshold of axial stress and relative brick 
and mortar strengths that differentiates whether cracking occurs through the units or 
through the mortar joints (ASCE, 2013).  

Toe crushing capacity 

The maximum toe crushing strength, Vtc, of a wall, pier or spandrel can be calculated using 
Equation 10.31 if no flanges are present or if you have decided to ignore them. If flanges 
are to be accounted for, refer to the section below.  

୲ܸୡ ൌ ሺߙ	ܲ  0.5	 ୵ܲሻ ቀ
౭


ቁ ቀ1 െ 
.ᇱౣ

ቁ …10.31 

where:  
 

α = factor equal to 0.5 for fixed-free cantilever wall/pier, or equal to 1.0 
for fixed-fixed wall/pier 

P =  superimposed and dead load at top of the wall/pier 
Pw =  self-weight of wall/pier 
Lw = length of the wall/pier, mm 
heff = height to resultant of seismic force (refer to Figure 10.65), mm 
fa  = axial compression stress due to gravity loads at mid height of 

wall/pier, MPa  
f’m  = masonry compression strength, MPa (refer to Section 10.7.3). 
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The capacity for bed-joint sliding in masonry elements is a function of bond and frictional 
resistance. Therefore, Equation 10.33 includes both factors. However, with increasing 
cracking, the bond component is progressively degraded until only the frictional 
component remains. The probable residual wall sliding shear capacity, Vs,r, is therefore 
found from Equation 10.33 setting the cohesion, c, equal to 0. 
 

Note: 

It is recommended that the bed joint sliding capacity of a rocking wall/pier be limited to a 
lateral drift of 0.003.  The lateral performance of a wall/pier is considered to be unreliable 
and not able to provide the level of resilience considered appropriate when the deflections 
exceed this value. Wall/pier elements that are not part of the seismic resisting system are 
expected be able to provide reliable vertical load carrying capacity at higher drifts, 
approaching 0.075. These greater limits can also be used for all wall/pier elements when 
cyclic stiffness and strength degradation are included in the analysis method used. Such an 
analysis will automatically include redistribution of the lateral loads between elements 
when this is necessary.   

Slip plane sliding 

A DPC layer, if present, will be a potential slip plane, which may limit the capacity of a 
wall. 
 
The capacity of a slip plane for no slip can be found from Equation 10.34: 

ܸୢ ୮ୡ ൌ ሺܲ	ௗߤ	  ௪ܲሻ  …10.34 

where: 
dpc = DPC coefficient of friction. Typical values are 0.2-0.5 for 

bituminous DPC, 0.4 for lead, and higher (most likely governed by 
the mortar itself) for slate DPC 

 
Other terms are as previously defined. 
 
Note: 

Where sliding of a DPC layer is found to be critical, testing of the material in its current/in 
situ state may be warranted. Alternatively, parametric checks, where the effects of 
low/high friction values are assessed, may show that the DPC layer is not critical in the 
overall performance. 
 
Sliding on a DPC slip plane does not necessarily define the deformation capacity of this 
behaviour mode. 
 
Evaluating the extent of sliding may be calculated using the Newmark sliding block 
(Newmark, 1965) or other methods. However, exercise caution around the sensitivity to 
different types of shaking and degradation of the masonry above/below the sliding plane. 
Where sliding is used in the assessment to give a beneficial effect, this should be subject to 
peer review.  
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Expected in-plane strength of URM spandrels should be the lesser of the flexural and shear 
strengths.  
 
is the chord rotation of the spandrel, relative to the piers. 
 

Note: 

It is considered prudent to limit the deformation capacity of a spandrel panel to a panel 
drift of 3y if its capacity is to be relied on as part of the seismic resisting system.  Panel 
chord rotation capacities beyond 0.02 or 0.01 for rectangular and arched spandrels 
respectively, for panels that are not assumed to be part of the lateral seismic resisting 
system, are not recommended as the performance of the spandrel (ie ability to remain in 
place) could become unreliable at rotations beyond these limits.  These greater limits can 
also be used for all spandrel elements when cyclic stiffness and strength degradation are 
included in the analysis method used. Such an analysis will automatically include 
redistribution of the lateral loads between elements when this is necessary and therefore 
the need to distinguish, in advance, between elements of the lateral and non-lateral load 
resisting systems is not required.   
 
Two generic types of spandrel have been identified: rectangular and those with shallow 
arches. Recommendations for the various capacity parameters for these two cases are given 
in the following sections.  
 
Investigations are continuing on appropriate parameters for deep arched spandrels. In the 
interim, until more specific guidance is available, it is recommended that deep arched 
spandrels be considered as equivalent rectangular spandrels with a depth that extends to 
one third of the depth of the arch below the arch apex. 
 
The geometrical definitions used in the following sections are shown on Figure 10.69. 
 

 
Figure 10.69: Geometry of spandrels with timber lintel (a) and shallow masonry arch (b) 

(Beyer, 2012) 

Rectangular spandrels 

The expected in-plane strength of URM spandrels with and without timber lintels can be 
determined following the procedures detailed below.  
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Note: 

There is limited experimental information on the performance of URM spandrels with 
lintels made from materials other than timber. However, URM spandrels with steel lintels 
are expected to perform in a similar manner to those with timber lintels. 

When reinforced concrete lintels are present the capacity of the spandrel can be calculated 
neglecting the contribution of the URM. 

Peak flexural strength 

The peak flexural strength of rectangular spandrels can be estimated using Equation 10.35 
(Beyer, 2012). Timber lintels do not make a significant contribution to the peak flexural 
capacity of the spandrels so can be ignored. 

ܸ୪ ൌ ൫ ୲݂  ୱ୮൯
౩౦మ ౩౦
ଷ౩౦

  …10.35 

where: 
ft  =  equivalent tensile strength of masonry spandrel 
psp  =  axial stress in the spandrel 
hsp  =  height of spandrel excluding depth of timber lintel if present 
bsp  = width of spandrel 
lsp  =  clear length of spandrel between adjacent wall piers. 

 
Unless the spandrel is prestressed the axial stress in the spandrel can be assumed to be 
negligible when determining the peak flexural capacity.  
 
Equivalent tensile strength of masonry spandrel, ft, can be estimated using Equation 10.36: 

୲݂ ൌ 1.3൫ܿ  ୮൯ߤ0.5 


ଶఓ
 …10.36 

where: 
pp  = mean axial stress due to superimposed and dead load in the 

adjacent wall piers  
f  =  masonry coefficient of friction 
c  =  masonry bed-joint cohesion. 

Residual flexural strength 

Residual flexural strength of rectangular URM spandrels can be estimated using    
Equation 10.37 (Beyer, 2012). Timber lintels do not often make a significant contribution 
to the residual flexural capacity of URM spandrels so they can be ignored. 

ܸ୪,୰ ൌ 	
	౩౦	౩౦మ ౩౦

౩౦
ቀ1 െ

౩౦
.଼ହౣ

ቁ ...10.37 

where: 
psp  =  axial stress in the spandrel 
fhm  =  compression strength of the masonry in the horizontal direction 

(0.5f’m). 
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Axial stresses are generated in spandrel elements due to the restraint of geometric 
elongation. Results from experimental research indicate that negligible geometric 
elongation can be expected when peak spandrel strengths are developed (Beyer, 2012; and 
Graziotti et al., 2012), as this is at relatively small spandrel rotations. As a result, there is 
little geometric elongation. Significant geometric elongation can occur once peak spandrel 
strengths have been exceeded, and significant spandrel cracking occurs within the 
spandrel, as higher rotations are sustained in the element. An upper bound estimate of 
the axial stress in a restrained spandrel, psp, can be determined using Equation 10.38 
(Beyer, 2014): 

ୱ୮ ൌ 	 ሺ1  ୱሻ݂ୢߚ ୲
౩౦

ଶට౩౦
మ ା౩౦

మ
 ...10.38 

where: 
fdt  =  masonry diagonal tension strength 
s  =  spandrel aspect ratio (lsp/hsp). 
 

Equation 10.38 calculates the limiting axial stress generated in a spandrel associated with 
diagonal tension failure of the spandrel. The equation assumes the spandrel has sufficient 
axial restraint to resist the axial forces generated by geometric elongation.  
 
In most typical situations you can assume that spandrels comprising the interior bays of 
multi-bay pierced URM walls will have sufficient axial restraint such that diagonal tension 
failure of the spandrels could occur.  
 
Spandrels comprising the outer bays of multi-bay pierced URM walls typically have 
significantly lower levels of axial restraint. In this case the axial restraint may be 
insufficient to develop a diagonal tension failure in the spandrels. Sources of axial restraint 
that may be available include horizontal post-tensioning, diaphragm tie elements with 
sufficient anchorage into the outer pier, or substantial outer piers with sufficient strength 
and stiffness to resist the generated axial forces. For the latter to be effective the pier would 
need to have enough capacity to resist the applied loads as a cantilever. 
 
It is anticipated that there will be negligible axial restraint in the outer bays of many typical 
unstrengthened URM buildings. In this case you can assume the axial stress in the spandrel 
is nil when calculating the residual flexural strength.  

Peak shear strength 

Peak shear strength of rectangular URM spandrels can be estimated using Equations 10.39 
and 10.40 (Beyer, 2012). Timber lintels do not make a significant contribution to the peak 
shear capacity of URM spandrels so can be ignored. 

ୱܸଵ ൌ
ଶ

ଷ
൫ܿ   ୱ୮൯݄ୱ୮ܾୱ୮ ...10.39ߤ

ୱܸଶ ൌ
ౚ౪

ଶ.ଷሺଵା
౩౦
మ౩౦

ሻ
ට1 

౩౦
ౚ౪

మ ݄ୱ୮ܾୱ୮ ...10.40 

Unless the spandrel is prestressed you can assume the axial stress in the spandrel is 
negligible when determining the peak shear capacity. Equation 10.39 is the peak shear 
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where a is the arch half angle of embrace computed as: 

ୟߙ ൌ tanିଵ ቀ
౩౦

ଶሺିሻ
ቁ ...10.44 

where dimensions ri, ra and lsp are defined in Figure 10.69. The arch is considered 
shallow if the half angle of embrace, a, satisfies Equation 10.45 where ro is also defined in 
Figure 10.69. 

cos ୟߙ 



 ...10.45 

Unless the spandrel is prestressed you can assume the axial stress in the spandrel is 
negligible when determining the peak flexural capacity. 

Residual flexural strength 

You can estimate the residual flexural capacity of a URM spandrel with a shallow arch 
using Equation 10.46 (Beyer 2012) and by referring to Figure 10.69. 

ܸ୪,୰ ൌ 	
	౩౦	౩౦౪౪౩౦

౩౦
ቀ1 െ

౩౦
.଼ହౣ

ቁ …10.46 

 
where dimension htot is defined in Figure 10.69. You can calculate spandrel axial stresses, 
psp, with the procedures set out in the previous section. 
 

 
Figure 10.71: Spandrel with shallow arch. Assumed load transfer mechanism after flexural 

(a) and shear (b) cracking. (Beyer, 2012) 

Peak shear strength 

You can estimate peak shear strength of a URM spandrel with a shallow arch using 
Equations 10.47 and 10.48 (Beyer, 2012): 
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Figure 10.75. The global strength capacity can be referred to in terms of base shear 
capacity. The deformation capacity will be the lateral displacement at heff for the building 
consistent with the base shear capacity accounting for non-linear behaviour as appropriate. 
 
This section provides guidance on the assessment of the global capacity for both basic and 
complex buildings. It also provides guidance on methods of analysis and modelling 
parameters. 
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Figure 10.75: Global capacity assessment approach for URM buildings 
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ratio of the applied shear at level i to the shear at the base of the line under consideration. 
For most basic buildings i will be the same for all lines of the seismic system.  
 
The presence of rigid diaphragms in basic buildings introduces an additional level of 
complexity into the building analysis. However, this analysis can still be kept quite simple 
for many buildings.  
 
For buildings with rigid diaphragms it will be necessary to consider the effect of the 
demand and resistance eccentricities (accidental displacement of the seismic floor mass 
and the location of the centre of stiffness or strength as appropriate). Refer Figure 10.77. If 
the lines of the seismic system in the direction being considered have some non-linear 
capability it is considered acceptable to resist the torque resulting from the eccentricities 
solely by the couple available from the lines of the seismic system perpendicular to the 
direction of loading. This will lead to a higher global capacity in many buildings than 
would otherwise be the case. If this approach is to be followed it would be more 
appropriate to consider the centre of strength rather than the centre of stiffness when 
evaluating the eccentricities.  
 
NZS 1170.5 requires that buildings not incorporating capacity design be subjected to a 
lateral action set comprising 100% of the specified earthquake actions in one direction plus 
30% of the specified earthquake actions in the orthogonal direction. The 30% actions 
perpendicular to the direction under consideration are not shown in Figure 10.77 for clarity 
and, suitably distributed, would need to be added to the shears to be checked for the 
perpendicular walls. These are unlikely to be critical for basic buildings. If the diaphragm 
is flexible, concurrency of the lateral actions should be ignored. 
 

 

Figure 10.77: Relationship between demand and capacity for a basic building with rigid 
diaphragms 

In the above discussion it has been assumed that the diaphragms are stiff enough to provide 
the required support to the face-loaded walls orientated perpendicular to the direction of 
loading. Diaphragms are considered as primary structural components for the transfer of 
these actions and their ability to do so may affect the global capacity of the building in that 
direction. Limits have been suggested in Section 10.8.3.2 for the maximum diaphragm 
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where: 
  Ch(T1) = the spectral shape factor determined from Clause 3.1.2, 

NZS 1170.5 for the first mode period of the building, T1, g 
Z = the hazard factor determined from Clause 3.1.4, NZS 1170.5 
Ru = the return period factor, Ru determined from Clause 3.1.5, 

NZS 1170.5 
N(T1,D) = the near fault factor determined from Clause 3.1.6, NZS 1170.5 
KR = the seismic force reduction factor determined from Table 10.14. 
 

Table 10.14: Recommended force reduction factors for linear static method 

Seismic performance/ 
controlling parameters 

Force reduction 
factor, KR 

Notes  

Pier rocking, bed joint sliding, 
stair-step failure modes 

3 Failure dominated by strong brick-weak mortar 

Pier toe failure modes 1.5  

Pier diagonal tension failure 
modes (dominated by brick 
splitting) 

1.0 Failure dominated by weak brick-strong mortar 

Spandrel failure modes 1.0  

 
Note: 

The concept of a ductility factor (deflection at ultimate load divided by the elastic 
deflection) can be meaningless for most URM buildings. The introduction of KR primarily 
reflects an increase in the damping available and therefore reduced elastic response rather 
than ductile capability assessed by traditional means. Therefore the displacements 
calculated from the application of C(T1) are the expected displacements and should not be 
further modified by KR. 
 
These force reduction factors apply in addition to relief from period shift (if any).  
 
Redistribution of seismic demands between individual elements of up to 50% is permitted 
when KR = 3.0 applies, provided that the effects of redistribution are accounted for in the 
analysis. 
 
When there are mixed behaviour modes among the walls/piers in a line of resistance, you 
can ignore the capacity of any piers for which KR is less than the value that has been 
adopted for the line of resistance. Otherwise, consider lower force reduction factors. If you 
have adopted higher force reduction factors, carefully evaluate the consequences of loss of 
gravity load support from any walls/piers that have been ignored.  
 
If there are mixed failure modes among the walls and piers in a line of resistance, the 
displacement compatibility between these piers and walls should be evaluated.      
 
For the case of perforated walls when a strong pier – weak spandrel mechanism governs 
the wall behaviour KR = 1.0 shall be adopted for the wall line as a whole, or the capacities 
of the spandrels can be ignored. When the contribution of the spandrels is ignored the 
higher KR factors detailed in Table 10.14 may be used provided the consequences of loss of 
the ignored spandrels are considered. 
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Appendix 10A: On-site Testing 

10A.1 General 

While the seismic response of URM buildings is significantly influenced by characteristics 
such as boundary conditions and the behaviour of inter-element connections, on-site testing 
of material properties improves the reliability of the seismic assessments, the numerical 
models that describe the seismic behaviour of URM buildings and may lead to less 
conservative retrofit designs. However, the non-homogenous nature of masonry combined 
with the age of URM buildings make it difficult to reliably predict the material properties 
of masonry walls. 
 
It is recommended that field sampling or field testing of URM elements is conducted. Field 
sampling refers to the extraction of samples from an existing building for subsequent 
testing offsite, while field testing refers to testing for material properties in-situ. A set of 
techniques are described in subsequent sections that can be used to determine masonry 
material properties. 
 
Before proceeding to on-site testing, it is important to sensibly understand what 
information will be collected from the investigation, how that would be used and what 
value the information will add to reliability of the assessment. Before deciding an 
investigation programme, sensitivity analyses should be undertaken to determine what 
assessment parameters are more important and likely to influence the assessment result and 
whether the default parameter values given are likely to be appropriate/sufficient.  
 
Only rarely should on-site testing be considered necessary for basic buildings.  

10A.2 Masonry Assemblage (Prism) Material 
Properties 

If masonry assemblage (prism) samples are to be extracted for laboratory testing they 
should be single leaf and at least three bricks high. If they are two leafs thick or more, cut 
them into single leaf samples. If present, remove rendering plaster from both sides of the 
samples. Cap the prepared samples using gypsum plaster to ensure uniform stress 
distribution. 
 
Test individual brick units and mortar samples as per Section 10A.3 when sampling of 
larger assemblages is not permitted or practical. Masonry properties can then be predicted 
using the obtained brick and mortar properties as set out in Section 10.7.  

10A.2.1 Masonry compressive strength 

Determine masonry compressive strength in accordance with ASTM C 1314-03b 
(ASTM 2003a). Figure 10A.1 shows a typical prism sample before testing. Aluminium 
frames are attached to the sample ends and a displacement gauge spans between the frames 
to measure the sample displacement.  
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ASTM C 1314-03b (ASTM 2003a) also enables you to determine the masonry modulus of 
elasticity (further detailed in Section 10A.2.2.1). 
 

 
Figure 10A.1: Example of extracted sample with test rig attached for the prism 

compression test 

10A.2.2 Masonry modulus of elasticity 

10A.2.2.1 Laboratory calibrated displacement measurement 

Laboratory calibrated displacement measurement devices may be attached to the masonry 
prisms during the compression tests detailed in Section 10A.2.1. Incorporate a minimum of 
two measurement devices to record displacements at opposing sample faces. Their gauge 
lengths should cover the distance from the middle of the top brick to the middle of the 
bottom brick. Use the recorded measurement to derive the masonry stress-strain 
relationship and subsequently the masonry modulus of elasticity, Em. The stress and strain 
values considered in the calculation of Em are those between 0.05 and 0.70 times the 
masonry compressive strength (f’m).  

10A.2.2.2 In situ deformability test incorporating flat jacks 

Flat jack testing is a versatile and effective technique that provides useful information on 
the mechanical properties of historical constructions. In-situ measurements of masonry 
modulus of elasticity should be performed in accordance with the ASTM C 1197 - 04 
(ASTM 2004) in situ deformability test.  
 
Note: 

Extensive studies have been conducted to confirm the reliability of this test, including the 
work by Noland J.L., Atkinson R.H., Schuller M.P. (1991), Gregorczyk and Lourenço 
(2000); Parivallal et al. (2011); and Simões (2012). 
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The in-situ deformability test is moderately destructive as it requires the removal of 
horizontal mortar joints (bed-joint) for the insertion of the two flat jacks (Figure 10A.2a). 
The horizontal slots are separated by at least five courses of brickwork, but the separation 
distance should not exceed 1.5 times the flat jack length. A pressure controlled hydraulic 
pump is used to inflate the flat jacks, applying vertical confinement pressure to the 
masonry between the two jacks. To monitor displacement, typically three measurement 
devices are attached between the two flat jacks (Figure 10A.2b). These flat jacks need to 
be calibrated, following ASTM C 1197 - 04 (ASTM 2004).  
 

 
(a) Cutting mortar bed-joints and insertion of 

flat jacks into clay brick masonry 

 
(b) In-situ deformability test set-up under 

preparation in clay brick masonry  

Figure 10A.2: In situ deformability test preparation (EQ STRUC Ltd) 

10A.2.3 Masonry flexural bond strength 

Extract masonry prisms two bricks high and a single brick wide, and subject these to the 
flexural bond test of AS 3700-2001 (Australian Standards, 2001). Remove any rendering 
plaster from the sides of the sample before performing this test. Cut any samples that are 
two leafs thick or more into single leaf masonry prism samples. Alternatively, you may 
conduct the flexural bond test in situ if this is more practical.  
 

 
(a) Plan view 

Measurement 
device 



Seismic Assessment of Unreinforced Masonry Buildings – Appendix 10A 
On-site Testing 

 

Section 10 - Seismic Assessment of Unreinforced Masonry Buildings  App-4 
Updated 22 April 2015 ISBN 978-0-473-26634-9 

 
(b) Elevation view 

Figure 10A.3: Flexural bond test-set-up (AS 3700-2001) 

10A.2.4 Masonry bed-joint shear strength 

Conduct the ASTM C 1531-03 (ASTM 2003b) in-situ bed-joint shear test to determine 
masonry bed-joint properties. This type of test is moderately destructive as it requires the 
removal of at least one brick on one side of the test specimen to allow for insertion of a 
hydraulic jack, as well as the removal of a vertical mortar joint on the opposite side to 
allow horizontal bed joint movement to occur. The hydraulic jack is then loaded, using a 
pressure controlled hydraulic pump, until visible bed-joint sliding failure occurred. You 
can then derive the bed-joint shear strength from the peak pressure records. 
 
Alternatively, extract three brick high masonry prisms for laboratory testing following the 
triplet shear test BS EN 1052-3 (BSI 2002). This test should be conducted while applying 
axial compression loads of approximately 0.2 MPa, 0.4 MPa and 0.6 MPa. At least three 
masonry prism samples should be tested at each level of axial compression. Remove any 
rendering plaster from both sides of the sample before testing. Cut any masonry samples 
that are two leafs thick or more into single leaf samples. Bed-joint shear tests performed in 
the laboratory and in situ are shown in Figure 10A.4.  
 

 
(a) Laboratory shear triplet test (b) In situ shear test without flat jacks (EQ 

STRUC Ltd) 

Figure 10A.4: In situ and laboratory bed- joint shear test 
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The in situ bed-joint shear test is limited to tests of the masonry face leaf. When the 
masonry unit is pushed in a direction parallel to the bed joint, shear resistance is provided 
across not only the bed-joint shear planes but also the collar joint shear plane. Because 
seismic shear is not transferred across the collar joint in a multi-leaf masonry wall, the 
estimated shear resistance of the collar joint must be deducted from the test values. This 
reduction is achieved by including a 0.75 reduction factor in Equation 10.33, which is the 
ratio of the areas of the top and bottom bed joints to the sum of the areas of the bed and 
collar joints for a typical clay masonry unit. 
 
The term P in Equation 10.33 represents the axial overburden acting on the bed joints. This 
value multiplied by the bed-joint coefficient of friction, (µf), allows estimation of the 
frictional component contributing to the recorded bed-joint stress. Due to the typical large 
variation of results obtained from individual bed-joint shear strength tests, the equation 
conservatively assumes µf = 1.0 for the purposes of determining cohesion, c. Therefore, for 
simplicity, the µf term has been omitted from the equation. 

10A.3 Constituent Material Properties 

10A.3.1 Brick compressive strength 

Extract individual brick units for the ASTM C 67-03a (ASTM 2003a) half brick 
compression test. Cut these brick units into halves and cap them using gypsum plaster 
before compression testing (Figure 10A.5). Note that it is possible to obtain half brick units 
from the residual samples of the Modulus of Rupture test described in Section 10A.3.2. 
 

     

Figure 10A.5: Brick and mortar sample and compression test set-up (EQ STRUC Ltd) 

10A.3.2 Brick modulus of rupture 

Extract individual brick units from the building and subject these to the modulus of rupture 
(MoR) test ASTM C 67-03a (ASTM 2003a). The tested brick specimens from the MoR 
test may be subjected to the half brick compression test ASTM C 67-03a (ASTM 2003a) in 
order to obtain a direct relationship between the brick MoR and compressive strength, f’b. 
Previous experimental investigation has confirmed that the brick unit MoR can be 
approximated to equal 0.12f’b. 
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10A.3.3 Mortar compressive strength 

Extract irregular mortar samples for laboratory testing. As it is common for URM walls to 
have eroded mortar joints that were later repaired using stronger mortar, take care when 
selecting the location for mortar sample extraction to ensure that your samples are 
representative. 
 
The method to determine mortar compressive strength is detailed in ASTM C 109-08 
(ASTM 2008). This method involves testing of 50 mm cube mortar samples, which 
generally are not attainable in existing buildings as most mortar joints are only 10 to 
18 mm thick. Therefore, cut the irregular mortar samples into approximately cubical sizes 
with two parallel sides (top and bottom). The height of the mortar samples should 
exceed 15 mm in order to satisfactorily maintain the proportion between sample size and 
the maximum aggregate size. Cap the prepared samples using gypsum plaster to ensure 
a uniform stress distribution and testing in compression (Valek and Veiga, 2005): see 
Figure 10A.6 for examples. 
  
Measure the height to minimum lateral dimension (h/t) ratio of the mortar samples and use 
this to determine the mortar compressive strength correction factors. Divide the 
compression test result by the corresponding correction factors in Equation 10A.1. The 
average corrected strength is equal to the average mortar compressive strength, f’j.  

	݂
ᇱ ൌ ௧ߙ௧ߙ ݂

ᇱ  …10A.1 

where: 

	݂୨
ᇱ  =  normalised mortar compressive strength 
 ୲୪  =  t/l ratio correction factorߙ
 ୦୲  =  t/l ratio correction factorߙ

୨݂୧
ᇱ  =  measured irregular mortar compressive strength. 

	
Equation 10A.1 normalises the measured compressive strength of irregular mortar samples 
to the compressive strength of a 50 mm cube mortar. Factors	ߙ୲୪	and	ߙ୦୲	are calculated as 
per Equations 10A.2 and 10A.3 (where ܨ.ܯ should be calculated as per Equation 10A.4) 
respectively. Factor	ߙ୲୪	 is required in order to normalise the sample t/l ratio to 1.0, while 
factor ߙ୦୲	is required in order to normalise the sample h/t ratio to 1.0, corresponding to a 
cubic mortar sample that is comparable to a 50 mm cube. These factors were derived based 
on the study detailed in Lumantarna (2012). 

୲୪ߙ ൌ 0.42 ௧


 0.58 …10A.2 

୦୲ߙ ൌ
ଵ

ெ.ி
 …10A.3 

ܨ.ܯ ൌ 2.4ሺ
௧
ሻଶ െ 5.7ሺ

௧
ሻ  4.3 …10A.4 

When conducting tests on laboratory manufactured samples make 50 mm mortar cubes, 
leave these to cure under room temperature (±20 °C) for 28 days, and test them in 
compression following the mortar cube compression test ASTM C 109-08 (ASTM 2008). 
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(a) Example of typical extracted 
mortar samples 

(b) Example of typical mortar 
sample preparations 

(c) Example of 
typical test set-up 

Figure 10A.6: Determination of mortar compression strength (EQ STRUC Limited) 

10A.4 Proof Testing of Anchor Connections 

An epoxied or grouted anchorage system is a typical method of connecting the floor and 
roof diaphragms of the building to masonry walls. Reliable anchor pull-out and shear 
strength is important for assessment or design of anchors and the specification of anchor 
spacing. Standard installation procedures of embedded anchors involve drilling the 
masonry wall, cleaning the drilled hole and epoxying or grouting threaded steel bars to the 
specified embedment depth, typically 50 mm less than the wall thickness. Two-part epoxy 
or high strength grouts are typically used with surface preparation conducted in accordance 
with the manufacturer’s specifications.  
 
On-site quality control and proof testing should be undertaken on at least 15% of all 
installed adhesive anchors, of which 5% should be tested prior to the installation of more 
than 20% of all anchors. Testing is required to confirm workmanship (particularly the 
mixing of epoxy and cleaning of holes) and anchor capacity against load requirements. If 
more than 10% of the tested anchors fail below a test load of 75% of the nominated 
probable capacity, discount the failed anchors from the total number of anchors tested as 
part of the quality assurance test. Test additional anchors to meet the 15% threshold 
requirements.  Failures that cannot be attributed to workmanship issues are likely to be  
indicative of an overestimation of the available capacity and a reassessment of the 
available probable capacity is likely to be required.   

10A.4.1 Anchors loaded in tension  

Once the adhesive is cured (typically over 24 hours), the steel anchors can be loaded in 
tension using a hydraulic jack until ultimate carrying capacity is reached (ASTM, 2003) or 
when the load exceeds two times the specified load. The typical test set-up is shown in 
Figure 10A.7. A 600 mm clear span of reaction frame allows testing of up to 300 mm 
embedment depth without exerting any confining pressures onto the test area, as the 
reaction frame supports are outside the general zone of influence. On completing the test, 
the anchor stud is typically cut flush with the wall surface.	
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(a) Typical anchor pull test 

set up 

 
(b) Close up of the typical test set-up with an 

alternative test frame 

Figure 10A.7: Typical anchor pull-out test set-up (EQ STRUC Ltd) 

10A.4.2 Anchors loaded in shear  

The test set-up that could be adopted for in situ testing of anchors loaded in shear is shown 
in Figure 10A.8. Monotonic shear loading can be applied by using a single acting hydraulic 
actuator, with the external diameter of the actuator selected to be as small as possible. The 
bracket arrangements should minimise the tension loads in the anchors. The aim is to 
determine the shear capacity in the absence of tension.  
	

(a) Typical anchor shear tests set-up  
(push cycle) 

(b) Typical anchor shear tests set-up 
(pull cycle) 

Figure 10A.8: Shear tests set-up used (EQ STRUC Ltd) 

10A.5 Investigation of Collar Joints and Wall Cavities  

Investigation of collar joints quality and wall cavities can be undertaken using a Ground 
Penetrating Radar (GPR) structural scanner (Figure 10A.9a). The scanner is capable of 
accurately determining the member thickness, metallic objects, voids and other 
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Appendix 10B: Derivation of Instability Deflection 
and Fundamental Period for Face-Loaded 
Masonry Walls 

10B.1 General considerations and approximations 

There are many variations that need to be taken into account when considering a general 
formulation for URM walls that might fail out-of-plane. These include: 

 Walls will not usually be of a constant thickness in a building, or even within a storey. 

 Walls will have embellishments, appendages and ornamentation that may lead to 
eccentricity of masses with respect to supports. 

 Walls may have openings for windows or doors. 

 Support conditions will vary. 

 Existing buildings may be rather flexible, leading to possibly large inter-storey 
displacements that may adversely affect the performance of face-loaded walls. 

 
You can use the following approximations to simplify your analysis while still accounting 
for some the key important factors. 
 
1 Deformations due to distortions (straining) in the wall can be ignored. Assume 

deflections to be entirely due to rigid body motion. 

Note: 

This is equivalent to saying that the change in potential energy from a disturbance of 
the wall from its initial position is mostly due to the movement of the masses of the 
elements comprising the wall and the movements of the masses tributary to the wall. 
Strain energy contributes less to the change in potential energy. 

 
2 Assume that potential rocking occurs at the support lines (e.g. at roof or floor levels) 

and, for walls that are supported at the top and bottom of a storey, at the mid-height. 
The mid-height rocking position divides the wall into two parts of equal height: a 
bottom part (subscript b) and a top part (subscript t). The masses of each part are not 
necessarily equal. 

Note: 

It is implicit within this assumption and (1) above that the two parts of the wall 
remain undistorted when the wall deflects. For walls constructed of softer mortars or 
walls with little vertical pre-stress from storeys above, this is not actually what 
occurs: the wall takes up a curved shape, particularly in the upper part. 
Nevertheless, errors occurring from the use of the stated assumptions have been 
found to be small and you will still obtain acceptably accurate results. 
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3 Assume the thickness to be small relative to the height of the wall. Assume the slope, 
A, of both halves of the wall to be small; in the sense that cos(A) ≈ 1 and sin(A) ≈ A. 

Note: 

The approximations for slope are likely to be sufficiently accurate for reasonably 
thin walls. For thick walls where the height to thickness ratio is smaller, the 
formulations in this appendix are likely to provide less accurate results and force-
based approaches provide an alternative. 

 
4 Inter-storey slopes due to deflection of the building are assumed to be small. 

Note: 

Approximate corrections for this effect are noted in the method. 
 
5 In dynamic analyses, the moment of inertia is assumed constant and equal to that 

applying when the wall is in its undisturbed position, whatever the axes of rotation. 

Note: 

The moment of inertia is dependent on the axes of rotation. During excitation, these 
axes continually change position. Assuming that the inertia is constant is reasonable 
within the context of the other approximations employed. 

 
6 Damping is assumed at the default value in NZS 1170.5:2004, which is 5% of 

critical. 

Note: 

For the aspect ratio of walls of interest, additional effective damping due to loss of 
energy on impact is small. Furthermore, it has been found that the surfaces at 
rocking (or hinge) lines tend to fold onto each other rather than experience the full 
impact that is theoretically possible, reducing the amount of equivalent damping that 
might be expected. However, for in-plane analysis of buildings constructed largely of 
URM, adopting a damping ratio that is significantly greater than 5% is appropriate. 

 
7 Assume that all walls in storeys above and below the wall under study move “in 

phase” with the subject wall. 

Note: 

Analytical studies have found this to be the case. One reason for this is that the 
effective stiffness of a wall as it moves close to its limit deflection (e.g. as measured 
by its period) becomes very low, affecting its resistance to further deflection caused 
by accelerations transmitted to the walls through the supports. This assumption 
means that upper walls, for example, will tend to restrain the subject wall by exerting 
restraining moments. 
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10B.2 Vertically spanning walls 

10B.2.1 General formulation 

Figures 10B.1 and 10B.2 show the configuration of a wall panel within a storey at two 
stages of deflection. The wall is intended to be quite general. Simplifications to the general 
solutions for walls that are simpler (e.g. of uniform thickness) are made in a later section. 
  
Figure 10B.1 shows the configuration at incipient rocking. Figure 10B.2 shows the 
configuration after significant rocking has occurred, with the wall having rotated through 
an angle A and with mid-height deflection, , where  = Ah/2. 
 
In Figure 10B.1 the dimensions eb and et relate to the mass centroids of the upper and 
lower parts of the panel. The dimension ep relates to the position of the line of action of 
weights from upper storeys (walls, floors and roofs) relative to the centroid of the upper 
part of the panel. The arrows on the associated dimensioning lines indicate the positive 
direction of these dimensions for the assumed direction of motion (angle A at the bottom of 
the wall is positive in the anti-clockwise sense). Under some circumstances the signs of the 
eccentricities may be negative; for example for ep when an upper storey wall is much 
thinner than the upper storey wall represented here, particularly where the thickness steps 
on one face. When the lines of axial force from diaphragm and walls from above are 
different, the resultant force should be calculated. 

 
Figure 10B.1: Configuration at incipient rocking 
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The instantaneous centres of rotation (ICR) are also marked on these figures. These are 
useful in deriving virtual work expressions. 
 

10B.2.2 Limiting deflection for static instability 

You can write the equation of equilibrium directly by referring to Figure 10B.2 and using 
virtual work expressions. For static conditions this is given by: 

ୠܹሺ݁ୠ െ ୠሻݕܣ  ୲ܹ൫݁୭  ݁ୠ  ݁୲ െ ሺ݄ܣ െ ୲ሻ൯ݕ  ܲ൫݁୭  ݁ୠ  ݁୲  ݁୮ െ
൯݄ܣ െሺ ୠܹݕୠ  ୲ܹݕ୲ሻ ൌ 0 …10B.1 

The final term represents the effect of any inter-storey drift. In the derivation presented, the 
total deformation has been assumed to be that resulting from the summation of the drift 
and the rocking wall.  
 
Writing: 

	ܽ ൌ ୠܹݕୠ  ୲ܹሺ݄ െ ୲ሻݕ  ݄ܲ …10B.2 

and: 

ܾ ൌ ୠܹ݁ୠ  ୲ܹሺ݁୭  ݁ୠ  ݁୲ሻ  ܲ൫݁୭  ݁ୠ  ݁୲  ݁୮൯ െሺ ୠܹݕୠ  ୲ܹݕ୲ሻ
 …10B.3 

and collecting terms in A, the equation of equilibrium is rewritten as: 

െܽܣ  ܾ ൌ 0 …10B.4 

from which: 

ܣ ൌ 


 …10B.5 

when the wall becomes unstable. 
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Figure 10B.2: Configuration when rotations have become significant and there is inter-

storey drift 

Therefore, the critical value of the deflection at mid-height of the panel, at which the panel 
will be unstable, is: 

∆୧ൌ ܣ 

ଶ
ൌ 

ଶ
 …10B.6 

It is assumed that m, a fraction of this deflection, is the maximum useful deflection. 
Experimental and analytic studies indicate that this fraction might be assumed to be about 
0.6. At larger displacements than 0.6i, analysis reveals an undue sensitivity to earthquake 
spectral content and a wide scatter in results.  

10B.2.3 Equation of motion for free vibration 

When conditions are not static, the virtual work expression on the left-hand side in the 
equation above is unchanged, but the zero on the right-hand side of the equation is replaced 
by mass x acceleration, in accordance with Newton’s law. This gives: 

െܽܣ  ܾ ൌ െܣܬሷ …10B.7 

This uses the usual notation for acceleration (a double dot to denote the second derivative 
with respect to time; in this case indicating angular acceleration), and J as the rotational 
inertia. 
 
The rotational inertia can be written directly from Figures 10B.1 and 10B.2, noting that the 
centroids undergo accelerations vertically and horizontally as well as rotationally, and 
these accelerations relate to the angular acceleration in the same way as the displacements 
relate to the angular displacement. While the rotational inertia is dependent on the 
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displacements, the effects of this variation are ignored. Therefore, the rotational inertia is 
taken as that when no displacement has occurred. This gives the following expression for 
rotational inertia. 

ܬ ൌ ୠ୭ܬ  ୲୭ܬ 
ଵ


ቄ ୠܹሾ݁ୠ

ଶ  ୠݕ
ଶሿ  ୲ܹሾሺ݁୭  ݁ୠ  ݁୲ሻଶ  ୲ଶሿݕ  ܲ ቂ൫݁୭  ݁ୠ  ݁୲ 

݁୮൯
ଶ
ቃቅ   ୟ୬ୡ …10B.8ܬ

where Jbo and Jto are the mass moments of inertia of the bottom and top parts respectively 
about their centroids, and Janc is the inertia of any ancillary masses, such as veneers, that 
are not integral with the wall but contribute to its inertia.  
 
For a wall with unit length, held at the top and bottom, and rocking crack at mid-height, 
with a density of ρ per unit volume, the mass moment of inertia about the horizontal axis 
through the centroid is given by: 

୶୶ሺkgmଶሻܫ ൌ ߩ
௧ృ౨౩౩ቀ


మ
ቁ
య

ଵଶ
 …10B.9 

The corresponding mass moment of inertia about the vertical axis through the centroid is: 

ሺkgmଶሻ	୷୷ܫ ൌ ߩ
ቀ
మ
ቁ௧ృ౨౩౩
య

ଵଶ
 …10B.10 

The polar moment of inertia through the centroid is the sum of these, or: 

kgmଶሻ	ୠ୭ሺܬ ൌ ୲୭ܬ ൌ ୶୶ܫ  ୷୷ܫ ൌ ୋ୰୭ୱୱݐߩ ቀ


ଶ
ቁ
௧ృ౨౩౩
మ ାቀ

మ
ቁ
మ
൨

ଵଶ
ൌ 

ଶ

௧ృ౨౩౩
మ ାቀ

మ
ቁ
మ
൨

ଵଶ
ൌ

ௐ

ଶ

௧ృ౨౩౩
మ ାቀ

మ
ቁ
మ
൨

ଵଶ
 …10B.11 

 
where m is the mass (kg) and W (N) is the weight of the whole wall panel and g is the 
acceleration of gravity. 
 
Note that in this equation the expressions in square brackets are the squares of the radii 
from the instantaneous centres of rotation to the mass centroids, where the locations of the 
instantaneous centres of rotation are those when there is no displacement. Some CAD 
programs have functions that will assist in determining the inertia about an arbitrary point 
(or locus), such as about the ICR shown in Figure 10B.2. 
 
Collecting terms and normalising the equation so that the coefficient of the acceleration 
term is unity gives the following differential equation of free vibration: 

ሷܣ െ 


ܣ ൌ െ 


 …10B.12 
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10B.2.4 Period of free vibration 

The solution of the equation for free vibration derived in the previous section is: 

ܣ ൌ ݄݊݅ݏଵܥ ൬ට



߬൰  ݄ݏଶܿܥ ൬ට




߬൰ 




 …10B.13 

The time, , is taken as zero when the wall has its maximum rotation, A (=/2h). Using 
this condition and the condition that the rotational velocity is zero when the time  = 0, the 
solution becomes: 

ܣ ൌ ቀଶ∆

െ 


ቁ ݄ݏܿ ൬ට




߬൰ 




 ….10B.14 

Take the period of the “part”, Tp, as four times the duration for the wall to move from its 
position at maximum deflection to the vertical. Then the period is given by: 

୮ܶ ൌ 4ට


ଵି݄ݏܿ ቆ

್
ೌ

್
ೌ
ିమ∆


ቇ …10B.15 

This can be simplified further by substituting the term for i found from the static analysis 
and putting the value of  used for the calculation of period as Δt  to give: 

୮ܶ ൌ 4ට


ଵି݄ݏܿ ቆ ଵ

ଵି
∆౪
∆

ቇ …10B.16 

If we accept that the deflection ratio of interest is 0.6 (i.e. ∆୫ ∆୧
ൗ = 0.6), then this becomes: 

୮ܶ ൌ 6.27ට


 …10B.17 

as in the 2006 guidelines. However, research (Derakhshan et al, (2014a)) indicates that the 
resulting period and responding displacement demand is too large if a spectrum derived 
from linear elastic assumptions is used. Rather, this research suggests that an effective 
period calculated from an assumed displacement of 60% of the assumed displacement 
capacity should be used. Therefore, the period is based on Δt = 0.36Δi so that: 

୮ܶ ൌ 4.07ට


 …10B.18 

10B.2.5 Maximum acceleration 

The acceleration required to start rocking of the wall occurs when the wall is in its initial 
(undisturbed) state. This can be determined from the virtual work equations by assuming 
that A=0. Accordingly: 

ሷ୫ୟ୶ܣ ൌ



 …10B.19 
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However, a more cautious appraisal assumes that the acceleration is influenced primarily 
by the instantaneous acceleration of the supports, transmitted to the wall masses, without 
relief by wall rocking. Accordingly: 

ܥ ൌ 

ሺௐౘ௬ౘାௐ౪௬౪ሻ
 …10B.20 

where Cm is the acceleration coefficient to just initiate rocking. 

10B.2.6 Participation factor 

The participation factor can be determined in the usual way by normalising the original 
form of the differential equation for free vibration, modified by adding the ground 
acceleration term. For the original form of the equation, the ground acceleration term is 
added to the RHS. Written in terms of a unit rotation, this term is (Wbyb + Wtyt) times the 
ground acceleration. The equation is normalised by dividing through by J, and then 
multiplied by h/2 to convert it to one involving displacement instead of rotation. The 
participation factor is then the coefficient of the ground acceleration. That is: 

ߛ ൌ
ሺௐౘ௬ౘାௐ౪௬౪ሻ

ଶ
 …10B.21 

10B.2.7 Simplifications for regular walls 

You can make simplifications where the thickness of a wall within a storey is constant, 
there are no openings, and there are no ancillary masses. Further approximations can then 
be applied: 

 The weight of each part (top and bottom) is half the total weight, W. 

 yb = yt = h/4 

 The moment of inertia of the whole wall is further approximated by assuming that all e 
are very small relative to the height (or, for the same result, by ignoring the shift of the 
ICR from the mid-line of the wall), giving J = Wh2/12g. Alternatively, use the 
simplified expressions for J given in Table 10B.1. 

 

10B.2.7.1 Approximate displacements for static instability 

Table 10B.1 gives values for a and b and the resulting mid-height deflection to cause static 
instability when eb and/or ep are either zero or half of the effective thickness of the wall, t. 
In this table eo and et are both assumed equal half the effective wall thickness. While these 
values of the eccentricities are reasonably common, they are not the only values that will 
occur in practice. 
 
The effective thickness may be assumed as follows: 

ݐ ൌ ቀ0.975 െ 0.025 

ௐ
ቁ  ୬୭୫ …10B.22ݐ

where tnom is the nominal thickness of the wall. 
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Experiments show that this is a reasonable approximation, even for walls with soft mortar. 
In that case, there is greater damping and that reduces response, which compensates for 
errors in the expression for effective thickness. 
 
10B.2.7.2 Approximate expression for period of vibration 
 
Noting that: 

ܽ ൌ ቀௐ
ଶ
 ܲቁ݄ …10B.23 

and using the approximation for J relevant to a wall with large aspect ratio, the expression 
for the period is given by: 

୮ܶ ൌ 4.07ට
ଶௐ

ଵଶሺௐାଶሻ
 …10B.24 

where it should be noted that the period is independent of the restraint conditions at the top 
and bottom of the wall (i.e. independent of both eb and ep). 
 
If the height is expressed in metres, this expression simplifies to: 

୮ܶ ൌ ට
.ଶ଼

ሺଵାଶ/ௐሻ
 …10B.25 

It should be appreciated that periods may be rather long.  
 
This approximation errs on the low side, which leads to an underestimate of displacement 
demand and therefore to slightly incautious results. The fuller formulation is therefore 
preferred. 
 
10B.2.7.3 Participation factor 
 
Suitable approximations can be made for the participation factor. This could be taken at the 
maximum value of 1.5. Alternatively, the numerator can be simplified as provided in the 
following expression, and the simplified value of J shown in Table 10B.1 can be used. 
 
10B.2.7.4 Maximum acceleration 
 
By making the same simplifications as above, the maximum acceleration is given by: 

ሷ୫ୟ୶ܣ ൌ



ൌ ଵଶ

ௐమ
 …10B.26 

Or, more cautiously, the acceleration coefficient, Cm, is given in Table 10B.1 for the 
common cases regularly encountered. 
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10B.3.2 Limiting deflection for static instability 

When the wall just becomes unstable, the relationship for A remains the same as before but 
the deflection is Ah. Thus, the limiting deflection is given by: 

∆୧ൌ ݄ܣ ൌ 


ൌ

ൣௐౘାሺౘା౦ሻ൧

ௐ௬ౘା
 ...10B.30 

For the case where P=0 and yb=h/2 this reduces to i = 2eb = t. 

10B.3.3 Period of vibration 

If Δt = 0.36Δi as for the simple case, the general expression for period would remain valid. 
However, cantilevers are much more susceptible to instability under real earthquake 
stimulation than wall panels that are supported both top and bottom. Therefore, the 
maximum useable displacement for calculation of capacity, Δm, is reduced from 0.6Δi to 
0.3Δi and the displacement for calculation of period changes from 0.6Δm to 0.8Δm = 0.24Δi 

so that:  

୮ܶ ൌ 3.1ට


 …10B.31 

 
Where P=0, eb=t/2, yb=h/2, approximating t=tnom and expressing h in metres, the period of 
vibration is given by: 

୮ܶ ൌ ට0.65݄ 1  ቀ௧

ቁ
ଶ
൨ …10B.32 

Note that P, whether eccentric or not, will not affect the static instability displacement, and 
therefore neither the displacement demand (by affecting the period), nor the displacement 
capacity. 

10B.3.4 Participation factor 

The expression for the participation factor remains unaffected; that is,  = Wh2/2J. This 
may be simplified for uniform walls with P=0 (no added load at the top) by inserting the 
specific expression for J. This gives: 

ߛ ൌ ଷ

ଶ൬ଵାቀ

ቁ
మ
൰
 …10B.33 

10B.3.5 Maximum acceleration 

Using the same simplifications as above: 

ܥ ൌ ௧


 …10B.34 
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Appendix 10C: Charts for Assessment of Out-of-
Plane Walls 

10C.1 General 

This appendix presents simplified ready-to-use charts for estimation of %NBS for face-
loaded unreinforced masonry walls with uniform thickness. The charts have been 
developed for walls with various slenderness ratios (wall height/thickness) vs Basic 
Performance Ratio (BPR). The BPR can be converted to %NBS after dividing it by the 
product of the appropriate spectral shape factor (Ch(0), required to evaluate C(0) for parts), 
return period factor (R), hazard factor (Z), near-fault factor (N(T, D)), and part risk factor 
(Rp) which have been assigned unit values for developing the charts. The charts are 
presented for various boundary conditions and ratio of load on the wall to self-weight of 
the wall. 
 
Refer to Section 10 and Appendix 10B for symbols and sign conventions.  
 
This appendix includes charts for the following cases: 

 one-way vertically spanning walls laterally supported both at the bottom and the top 
with no inter-storey drift 

 one-way vertically spanning walls laterally supported at the top and the bottom with 
inter-storey drift of 0.025  

 vertical cantilever walls. 
 
The following section presents how these charts should be used. 

10C.2 One-way Vertically Spanning Face-Loaded 
Walls 

Charts for one-way vertically spanning walls are presented in Figures 10C.1a-f, 10C.2a-f 
and 10C.3a-f for 110 mm, 230 mm and 350 mm thick walls respectively for inter-storey 
drift of 0.00. Similarly, charts for an inter-storey drift of 0.025 are presented in 
Figures 10C.4a-f, 10C.5a-f and 10C.6a-f for 110 mm, 230 mm and 350 mm thick walls 
respectively. The charts have been developed for et = eo = t/2 and various values for ep.  
 
Follow the following steps for estimation of %NBS for a vertically spanning face-loaded 
wall:  

 Identify thickness, tGross and height, h of the wall. 

 Calculate slenderness ratio of the wall (h/tGross). 

 Calculate the total self-weight, W of the wall. 

 Calculate vertical load, P on the wall. This should include all the dead load and 
appropriate live loads on the wall from above. 

 Calculate P/W. 

 Calculate eccentricities (eb and ep). eb could be t/2 or 0, whereas ep could be ±t/2 or 0. 
To assign appropriate values, check the base boundary condition and location of P on 
the wall. Calculation of effective thickness, t is not required. 
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 Refer to the appropriate charts (for appropriate eb and ep, P/W and inter-storey drift). 

 Estimate Basic Performance Ratio (BPR) from the charts. Linear interpolation between 
plots may be used as necessary for inter-storey drifts between 0 and 0.025. 

 Refer NZS 1170.5 for Ch(0) required to evaluate C(0) for parts, R, Z, N(T, D), CHi and 
Rp. For estimation of CHi, hi is height of the mid-height of the wall from the ground. 

 %ܰܵܤ ൌ 	௦		ோ௧		௧௦		/௧

ሺሻோேሺ்,ሻౄோౌ
 

10C.3 Vertical Cantilevers 

Charts for one-way vertically spanning walls are presented in Figures 10C.7a-c, 10C.8a-c 
and 10C.9a-c for 110 mm, 230 mm and 350 mm thick walls respectively.  
 
Follow the following steps for estimation of %NBS of a face-loaded cantilever wall:  

 Identify thickness, tGross and height, h of the wall. 

 Calculate slenderness ratio of the wall (h/tGross). 

 Calculate total self-weight, W of the wall above the level of cantilevering plane. 

 Calculate vertical load, P on the wall, if any. This should include all the dead load and 
appropriate live loads on the wall from above. 

 Calculate P/W. 

 Calculate eccentricity, ep, for loading P(ep). ep could be ±t/2 or 0, which depends upon 
location of P on the wall. Calculation of effective thickness, t is not required. 

 Refer to the appropriate charts (for appropriate ep, and P/W). 

 Estimate Basic Performance Ratio (BPR) from the charts. Interpolation between plots 
may be used as necessary. 

 Refer NZS 1170.5 for Ch(0) required to evaluate C(0) for parts, R, Z, N(T, D), CHi and 
Rp. For estimation of CHi, hi shall be taken as height of the base of the cantilever wall. 

 %ܰܵܤ ൌ 	௦		ோ௧		௧௦		/௧

ሺሻோேሺ்,ሻౄோౌ
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Allowing for soil-foundation-structure interaction can be very complicated and difficult to 
model. Precision should not be assumed in any assessment of the interaction, but the 
sensitivity to the expected response of the various assumptions should be understood. The 
process will require close collaboration between the structural engineer and the 
geotechnical engineer with each having an understanding of the issues faced by the other. 
 
For assessments of earthquake performance of buildings both the structural and 
geotechnical engineer must recognise and accommodate the potential for non-linear 
behaviour of the structure, foundations and the ground. Principles to work by include: 

 The ground’s behaviour cannot be represented by unique parameter values with 
uniform distributions (e.g. linear springs). 

 With close collaboration, the old fear of possible misinterpretations and abuse of 
numbers (e.g. spring stiffness, modulus of subgrade reaction) can be significantly 
reduced and possibly averted. 

 An iterative process between structural and geotechnical designers has to be established 
as soil behaviour is non-linear, spring stiffness depends on load, and load depends on 
structure (including foundation) stiffness.  

 Sensitivity to variations in assumptions should always be checked. 
 
There can be some beneficial influence of soil-foundation structure interaction on a 
building’s life-safety performance (e.g. elongation of building period, concentration of 
displacement demands in ‘ductile’ foundation rotation, damping resulting from plastic soil 
behaviour etc.). However, these beneficial influences are the subject of on-going research. 
The assessing engineer should be cautioned in adopting the various ‘benefits’ of SFSI if 
considering possible mechanisms that may significantly reduce the assumed seismic 
demands on the structure.  
 
The following are considerations for SFSI modelling: 
 

 Soil structure interaction is modelled directly by soil springs, because the structural 
model needs to be supported on something: 

- The behaviour of springs is predictable and easy to understand. 

- Springs are easy to incorporate into the software most structural engineers use. 

- In a lot of cases structure response is not that sensitive to the spring values used 
(sensitivity test – 50% to 200% x spring value). If insensitivity is confirmed, this in 
itself is a useful finding. 

 Pinned or fixed supports are not necessarily realistic. 

 Load transfer and shearing depends on relative stiffness of both structural elements and 
supporting ground. 

 Multiple load cases to be considered (permanent, temporary, dynamic, different 
combinations, load factors etc.). 

 Serviceability deflections are often critical for the design of new structures but not for 
the assessment of existing structures. Therefore, bearing capacities capped to limit 
settlements to meet serviceability conditions are not appropriate for assessments of 
structures for earthquake life-safety protection. 

 Cost and time associated with more rigorous analysis methods. 
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