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Key Features

• Improvement of General Assessment Framework –
Emphasis on Analytical Procedure

• from Local to Global 

• Introduction of Hierarchy of Strength Evaluation

• Schematic of Typical Deficiencies/Vulnerabilities

• Narrative/Tables on NZ Practice/Code Developments

- Material Properties (Steel and Concrete) 

- Structural Details (beams, columns, joints, walls)

Member Subassembly System
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Flow-Chart of Assessment Procedure

Step 1- CAPACITY Step 2- DEMAND

Step 3 – CAPACITY vs. DEMAND

(Behaviour)

V

Δ
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Step 1- CAPACITY

V

Δ

Building data:

- Geometry

- Material properties

- Structural details 

1a- Component Level

(beam, column, joint)
1b- Subassembly Level

Evaluate strength and deformation 

capacity:

-Flexure, Shear, Flexure-shear 

interaction

- Cyclic degradation;  Lap splices 

failure; Bi-directional effects

Outcomes (capacity curves): 

Moment-curvature/rotation 

and/or Force-Displacement 

 

M or F 

or or

Flexural capacity  

Shear/cyclic 

degradation  

Evaluate the Hierarchy of Strength 

and sequence of events at a 

subassembly level

1c - Structural System Level

Identify the global mechanism 

Evaluate the Global Capacity Curve

(Force-Displacement)

Chapter 5

Concrete Buildings
Leader: Stefano Pampanin
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Knowing and understanding 
our Special Patients
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Christchurch, built 1950s
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H-H

Christchurch, built 1950s
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History of NZ Design Standards 
(Text and Appendix C5A)

Appendix C5A –
Evolution of NZ Concrete Design Standard
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Example of typical column layouts with seismic design according to 

different New Zealand concrete standards from the mid-1960s 

onwards - Figure C5.16 (from Niroomandi et al., 2015)

CAREFUL with pre-1995 and post-1982 non-Ductile Columns!
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Damage observed after the 

4 Sept 2010 Canterbury earthquake

Figure C5.2: Experimental tests 

on ‘1982’ detailing (Boys et al., 

2008)

‘Non-Ductile’ Gravity Columns

• Limited Rotation and 
Drift Capacity (1-1.5%)

• Significant Effects of
Bi-directional Loading
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Tables C5.1-C5.2: Typical/expected structural deficiencies and observed damage/failure 
mechanism in pre mid-1970s Canterbury RC buildings
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• inadequate transverse reinforcement and detailing in plastic
hinge regions, beam-column joints and wall systems

• insufficient lap splices in columns, beams and walls

• insufficient longitudinal reinforcement ratio in walls leading to
single crack opening, when compared to a spread plastic hinge,
and failure in tension of the rebars

• lower quality of materials (concrete and steel) when compared
to current practice, in particular:

- use of low grade plain round (smooth) bars for both
longitudinal (until mid-1960) and transverse reinforcement

- low-strength concrete (up to or below 20-25 MPa)

Typical Structural 

Deficiencies of RC 

Buildings 

• lack of or inadequate capacity design considerations

• lack of displacement compatibility between the lateral
load resisting systems, the floor-diaphragms and the
gravity load bearing systems (e.g. non-ductile columns
with limited confinement details and drift capacity)

• plan and vertical irregularity

• potential brittle failure mechanisms due to interaction
with secondary elements, i.e. spandrel beams, masonry
infills, facades causing
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Material Properties and Testing 

• In the Guidelines reference default values for the mechanical properties of 
the reinforcing steel based on standard of the time are provided

• Appendix C5C - Overview of the evolution of concrete and steel reinforcing 
material properties specifications and design requirements in New Zealand 
Standards
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• Material Testing should be targeted to 
elements within the most 
critical/uncertain mechanism, 

e.g. as part of hierarchy of strength
evaluation.

• Appendix C5C: 
Overview of alternative techniques: 

destructive
semi-destructive 
non-destructive

Material Properties and Testing
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Step 1a – Element Capacities

Evaluate the Capacity Curves for each element:

- moment-curvature/rotations and/or

- force-displacement (mostly for columns and walls)

Strength and deformation capacities at key limit states

(i.e. yielding and ultimate capacity) for:

- Flexure and shear (including bar buckling, cyclic
degradation, lap splices, bi-directional effects)

 

M or F 

or or

Flexural capacity  

Shear/cyclic 

degradation  
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Strain Limits at Probable Capacity

𝐩𝐫𝐨𝐛

Concrete  
𝜀cu = 0.004 +

1.4𝜌v𝑓yh 𝜀su

𝑓cc
(≤ 0.015) 

(confined core) 

Steel 𝜀s = 0.06 (≤ 0.6𝜀su ) 
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From Moment-Curvature to Force- Displacement

𝛥prob = 𝛥y + 𝛥p

𝛥y = 𝜙y
𝐻2

3

𝛥p = 𝜙p𝑳𝐩𝐻 = 𝜙prob −𝜙p 𝑳𝐩𝐻

𝐿p = 𝑘𝐿c + 𝐿sp ≥ 2𝐿sp
(spread plastic hinge)

What plastic hinge length?

µ =
prob

y

F𝒑𝒓𝒐𝒃

𝒑𝒓𝒐𝒃
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൯𝑽𝐩 = 𝟎. 𝟖𝟓 (𝑽𝐜 + 𝑽𝐬

𝑽𝐜 = 𝜶𝜷𝜸 𝒇 𝐜
′ 𝟎. 𝟖𝑨𝐠

1 ≤ 𝛂 = 3 −
𝑀

𝑉𝐷
≤ 1.5

β = 0.5+20ρl ≤1

g = strength degradation factor
in plastic hinge due to ductility

𝑉s =
𝐴v𝑓yt𝑑

𝑠

Shear Capacity - Beams
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൯𝑽𝐩 = 𝟎. 𝟖𝟓 (𝑽𝐜 + 𝑽𝐬 + 𝑽𝒏

Shear Capacity – Columns

g = shear strength degradation factor
in the plastic hinge region
due to ductility

𝑽𝒏 = 𝑵∗ 𝒕𝒂𝒏 𝜶



NEW ZEALAND SOCIETY FOR 
EARTHQUAKE ENGINEERING

Beam-Column Joints Behaviour

- Depends on the type of joints 
and detailing 

- Affected by Variation of Axial 
load 

- Affected by Bi-directional 
Loading
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𝑽𝐩𝐣𝐡 = 𝟎. 𝟖𝟓 𝒗𝐜𝐡𝒃𝒋𝒉

Shear Capacity – Joints (1/2)

𝑣ch = 𝑣j = 𝑝𝑡 1 +
𝑁∗

𝐴g𝑘 𝑓′c
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Nominal Shear Stress Principal  Stresses
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An Equivalent ‘Moment-Curvature’ for the Joint
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Knee joint under closing moment;

deformed bars  (Priestley, 1997)

Tee joints with bar end hooks and

smooth bars (Proposed curve)

Tee joint and Knee joint under opening

moments; deformed bars (Priestley, 1997)

Observed first diagonal

cracking of Tee-joint

specimens

𝑝𝑡 = 𝒌 𝑓 c
′ Interior Joints

• 𝒌 = 0.8 for interior joints

Exterior Joints

• 𝑘 = 0.4 deformed bars anchored

into the joint core

• 𝑘 = 0.3 deformed bars anchored

away from the joint core

• 𝑘 = 0.2 plain round bars with end hooks
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Shear Capacity – Joints (2/2)

𝑽𝐩𝐣𝐡 = 𝟎. 𝟖𝟓 𝒗𝐜𝐡𝒃𝒋𝒉

𝑽𝐩𝐣𝐡 = 0.85𝑘 𝑓c
′ 1 +

𝑁∗

𝐴g𝑘 𝑓′c
𝑏jℎ ≤ 𝟏. 𝟗𝟐 𝒇 𝒄

′ 𝒃𝒋𝒉

𝑣𝑐ℎ = 𝑘 𝑓 𝑐
′ 1 +

𝑁∗

𝐴𝑔𝑘 𝑓′𝑐
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• Evaluation of Hierarchy of Strength and Sequence of Events between
connected elements

• Identification of Mechanism at a subassembly level.

Step 1b - Hierarchy of Strength

Beam hinging Joint Shear Failure Column hinging
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Evaluation of Hierarchy of Strength

M-N Interaction Diagram
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Joint Panel

Column

Beam 

As-Built Joint 

Capacity Curves
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From Agkuzel, 2011
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The likely global or system level mechanisms are determined.

Step 1c – Global Mechanism

Global capacity curve (Lower, Upper bounds, Actual) are evaluated
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Evaluation of %NBS
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Comparing Alternative Retrofit Options

Pampanin, Betham, Ligabue et al., 

Pampanin et al. 
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(Let us not forget about)

Diaphragms
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Diaphragm Assessment  

%𝑁𝐵𝑆 = 100
0.9𝑅prob

𝐾d𝑅E,μ=1.25

(Strength-based %NBS)

Capacity elements 
(NZS3101:2006)

demand

Demand Floor Forces and Internal Actions 
(Appendix C5E.9- C5E.11)

Strength Deformation/Drift 

%𝑁𝐵𝑆 = 100
𝜃SC

𝐾d𝜃SD

(Drift-based %NBS)
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QUESTIONS?


